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ABSTRACT

Derman and Kani ~1994!, Dupire ~1994!, and Rubinstein ~1994! hypothesize that
asset return volatility is a deterministic function of asset price and time, and de-
velop a deterministic volatility function ~DVF! option valuation model that has the
potential of fitting the observed cross section of option prices exactly. Using S&P
500 options from June 1988 through December 1993, we examine the predictive
and hedging performance of the DVF option valuation model and find it is no
better than an ad hoc procedure that merely smooths Black–Scholes ~1973! implied
volatilities across exercise prices and times to expiration.

EXPECTED FUTURE VOLATILITY PLAYS a central role in finance theory. Conse-
quently, accurately estimating this parameter is crucial to meaningful fi-
nancial decision making. Finance researchers generally rely on the past
behavior of asset prices to develop expectations about volatility, document-
ing movements in volatility as they relate to prior volatility and0or variables
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in the investors’ information set. As useful as such investigations have
been, they are by nature backward looking, using past behavior to project
forward. An alternative approach, albeit less explored in the literature, is
to use reported option prices to infer volatility expectations.1 Because option
value depends critically on expected future volatility, the volatility expec-
tation of market participants can be recovered by inverting the option val-
uation formula.

The volatility expectation derived from reported option prices depends on
the assumptions underlying the option valuation formula. The Black–
Scholes ~1973! model, for example, assumes the asset price follows geometric
Brownian motion with constant volatility. Consequently, all options on the
same asset should provide the same implied volatility. In practice, however,
Black–Scholes implied volatilities tend to differ across exercise prices and
times to expiration.2 S&P 500 option-implied volatilities, for example, form
a “smile” pattern prior to the October 1987 market crash. Options that are
deep in the money or out of the money have higher implied volatilities than
at-the-money options. After the crash, a “sneer”3 appears—the implied vol-
atilities decrease monotonically as the exercise price rises relative to the
index level, with the rate of decrease increasing for options with shorter
time to expiration.

The failure of the Black–Scholes model to describe the structure of re-
ported option prices is thought to arise from its constant volatility assump-
tion.4 It has been observed that when stock prices go up volatility goes down,
and vice versa. Accounting for nonconstant volatility within an option valu-
ation framework, however, is no easy task. With stochastic volatility, option
valuation generally requires a market price of risk parameter, which, among
other things, is difficult to estimate. An exception occurs when volatility is a
deterministic function of asset price and0or time. In this case, option valu-
ation based on the Black–Scholes partial differential equation remains pos-
sible, although not by means of the Black–Scholes formula itself. We refer to
this special case as the “deterministic volatility function” ~DVF! hypothesis.

Derman and Kani ~1994a,b!, Dupire ~1994!, and Rubinstein ~1994! develop
variations of the DVF approach. Their methods attempt to decipher the cross
section of option prices and deduce the future behavior of volatility as an-
ticipated by market participants. Rather than positing a structural form for
the volatility function, they search for a binomial or trinomial lattice that
achieves an exact cross-sectional fit of reported option prices. Rubinstein, for

1 See Breeden and Litzenberger ~1978!, Bick ~1988!, and Bates ~1996a, 1996b!.
2 Rubinstein ~1994! examines the S&P 500 index option market. Similar investigations have

also been performed for the Philadelphia Exchange foreign currency option market ~e.g., Taylor
and Xu ~1993!!, and for stock options traded at the London International Financial Futures
Exchange ~e.g., Duque and Paxson ~1993!! and the European Options Exchange ~e.g., Heynen
~1993!!.

3 Webster ~1994, p. 1100! defines a sneer as “a scornful facial expression marked by a slight
raising of one corner of the upper lip.”

4 Putting it succinctly, Black ~1976, p. 177! says that “if the volatility of a stock changes over
time, the option formulas that assume a constant volatility are wrong.”
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example, uses an “implied binomial tree” whose branches at each node are
designed ~either by choice of up-and-down increment sizes or probabilities!
to ref lect the time variation of volatility.

The goal of this paper is to assess the time-series validity of assuming
volatility is a deterministic function of asset price and time. We do this by
answering the question: Is the asset price behavior revealed by these meth-
ods validated by the actual, subsequent behavior of asset prices? We do not
perform statistical analysis on the asset prices themselves, however, as this
would require years of observations. Instead, we consider the future behav-
ior of option prices. This approach represents a powerful statistical proce-
dure that more rapidly yields a verdict on the validity of the DVF approach.

To implement this approach, we simply move out-of-sample to assess whether
the volatility function implied today is the same one embedded in option
prices tomorrow. If the estimated volatility function is stable through time,
this finding supports the DVF approach as an important new way to iden-
tify the underlying process of financial market prices and for setting hedge
ratios and valuing exotic options. On the other hand, if the estimated func-
tion is not stable, we must conclude that valuation and risk management
using the DVF approach is unreliable and that other explanations for the
Black–Scholes implied volatility patterns must be sought.

The paper is organized as follows. In Section I, we document the historical
patterns of the Black–Scholes implied volatilities. In Section II, we provide
a brief overview of the implied tree approach. Section III outlines our em-
pirical procedure. We show how it is related to the implied tree specification,
we review our computational procedure for option valuation under determin-
istic volatility, and we describe the data. In Section IV, we estimate the im-
plied volatility functions using the DVF model on S&P 500 index option prices,
and we describe the model’s goodness-of-fit and the time-series behavior of its
implied parameter values. In Sections V and VI, we assess the time-series
validity of the implied volatility functions. Section V examines how well the
implied functions predict option prices one week later, and Section VI as-
sesses whether the DVF approach improves hedging performance. In Sec-
tion VII, we examine several variations of the model and the procedure to
ascertain the robustness of our approach. Section VIII concludes with a sum-
mary of the main results and some suggestions for future research.

I. Black–Scholes Implied Volatility Patterns

The motivation for considering deterministic volatility functions in option
valuation arises from apparent deficiencies of the Black–Scholes model. These
deficiencies are most commonly expressed in cross section as the relation
between the Black–Scholes implied volatility and option exercise price. In
this section, we illustrate this relation for S&P 500 index options and de-
scribe its implications for option valuation.

S&P 500 index options are used in our illustration because, as Rubinstein
~1994! argues, this option market provides a context where the Black–
Scholes conditions seem most reasonably satisfied. We use only one cross
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section of option prices, from April 1, 1992, but the pattern on this day is
typical of those since the October 1987 stock market crash. The data for the
example include all bid and ask price quotes for call options during the
half-hour interval of 2:45 to 3:15 p.m. ~CST!. To compute the implied vola-
tilities, we use the Black–Scholes call option formula,

c 5 ~S 2 PVD!N~d1! 2 Xe2rTN~d2!, ~1!

where S 2 PVD is the index level net of the present value of expected div-
idends paid over the option’s life, X is the option’s exercise price, T is the
time to expiration, r is the risk-free interest rate, s is the volatility rate,

d1 5
ln@~S 2 PVD!0X # 1 ~r 1 0.5s2 !T

s%T
, ~2!

d2 5 d1 2 s%T, ~3!

and N~d! is the cumulative unit normal density function with upper integral
limit d. To proxy for the risk-free rate, the rate on a T-bill of comparable
maturity is used. The actual cash dividends paid during the option’s life are
used to proxy for expected dividends. For each option price, the implied vol-
atility is computed by solving for the volatility rate ~s! that equates the
model price with the observed bid or ask quote.5

Figure 1 illustrates the typical pattern in the S&P 500 implied volatilities.
Strikingly, the volatilities do not all lie on a horizontal line. This pattern is
often called the volatility “smile” and constitutes evidence against the Black–
Scholes model. In the figure, the “smile” actually appears to be more of a
“sneer.” The smile label arose prior to the 1987 crash when, in general, the
volatilities were symmetric around zero moneyness, with in-the-money and
out-of-the-money options having higher implied volatilities than at-the-
money options. The sneer pattern displayed in Figure 1, however, is more
indicative of the pattern since the crash, with call ~put! option implied vol-
atilities decreasing monotonically as the call ~put! goes deeper out of the
money ~in the money!.

Figure 1 also illustrates that the sneer is inf luenced by the time to expi-
ration of the underlying options.6 The implied volatilities of seventeen-day

5 We use the reported index level for this exercise. Since this index is stale, the implied
volatilities of call options will be biased downward or upward depending on whether the index
is above or below its true level. With puts, the bias is opposite. By using only call options, the
bias for each option is in the same direction. Longstaff ~1995! has shown that using the wrong
index level will create a smile, but a much fainter one than observed.

6 It is important to recognize that the moneyness variable in Figure 1 is adjusted by the
square root of time. Without the adjustment, the slope of the sneer steepens as the option’s life
grows shorter. This is consistent with Taylor and Xu ~1993!, who demonstrate that more com-
plex valuation models ~such as jump diffusion! can generate time-dependence in the sneer even
when volatility is constant over time.

2062 The Journal of Finance



options are generally lower than the forty-five-day options, which, in turn,
are lower than the eighty-day options. This pattern suggests that the local
volatility rate modeled within the DVF framework is a function of time.

The differences in implied volatilities across exercise prices shown in Fig-
ure 1 appear to be economically significant. The bid-implied volatility for
the short-term, in-the-money call, for example, exceeds the ask-implied vol-
atility for the short-term, at-the-money call,7 implying the possibility of an
arbitrage profit. A strategy of selling in-the-money calls and buying at-the-
money calls to capture the “arbitrage profits” is more complex that merely
spreading the options, however, and requires dynamic rebalancing through
time. The differences among the implied volatilities, however, are too large
to be accounted for by the costs of dynamic rebalancing, as can be shown
using the Constantinides ~1997! bounds.

7 The variation in the difference between bid and ask volatilities depends on two factors.
First, although bid0ask spreads are competitively determined, they tend to vary systematically
with option moneyness. In part, this may be caused by the CBOE’s rules governing the maxi-
mum spreads for options with different premia. The rules state that the maximum bid0ask
spread is ~a! 104 for options whose bid price is less than $2, ~b! 308 for bid prices between $2 and
$5, ~c! 102 for bid prices between $5 and $10, ~d! 304 for bid prices between $10 and $20, and
~e! 1 for bid prices above $20. See the Chicago Board Options Exchange ~1995, pp. 2123–2124!.
Second, the sensitivity of option price to the volatility parameter is highest for at-the-money
options, with in-the-money and out-of-the-money having much lower sensitivities. As a result,
for a given spread between the bid and ask price quotes, the range of Black0Scholes implied
volatilities will be lowest for at-the-money options and will become larger as the options move
deeper in or out of the money.

Figure 1. Black–Scholes implied volatilities on April 1, 1992. Implied volatilities are com-
puted from S&P 500 index call option prices for the April, May and June 1992 option expira-
tions. The lower line of each pair is based on the option’s bid price, and the upper line is based
on the ask. Time-adjusted moneyness is defined as @X0~S 2 PVD! 2 1#0%T, where S is the index
level, PVD is the present value of the dividends paid during the option’s life, X is the option’s
exercise price, and T is its number of days to expiration.
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The differences raise a question concerning the source of the Black–
Scholes model’s apparent deficiency. One possibility is that the constant vol-
atility assumption is violated, or that the distribution of asset prices at
expiration is not lognormal. In this context, the emergence of the volatility
sneer after the crash might be explained by an increase in investors’ prob-
ability assessment of downward moves in the index level. The nonlognor-
mality of prices is also consistent with what has become known as the “Fischer
Black effect.” Black ~1976! writes

I have believed for a long time that stock returns are related to volatility
changes. When stocks go up, volatilities seem to go down; and when
stocks go down, volatilities seem to go up. ~p. 177!

This inverse time-series relation between stock returns and volatility changes
has been documented in a number of empirical studies. Most of the studies
use stock returns to measure volatility, but the effect is also apparent when
volatility is measured using option prices. Figure 2 shows the level of Black–
Scholes implied volatility during the sample period of our study, June 1,
1988 through December 31, 1993. As the S&P 500 index level trends up, the
level of implied volatility trends down. The correlation in the first differ-
ences of these series is 20.570.

In addition to the DVF approach considered in this paper, a number of
option valuation models are capable of explaining the behavior documented
in Figures 1 and 2. The stochastic volatility models of Heston ~1993! and
Hull and White ~1987!, for example, can explain them when the asset price
and volatility are negatively correlated. The negative correlation is what
produces the sneer, not the stochastic feature itself. Similarly, the jump model
of Bates ~1996a! can generate these patterns when the mean jump is nega-

Figure 2. S&P 500 index level and Black–Scholes implied volatility each Wednesday
during the period of June 1988 through December 1993.

2064 The Journal of Finance



tive. Deterministic volatility models, however, are the simplest because they
preserve the arbitrage argument that underlies the Black–Scholes model.
Unlike stochastic volatility and jump models, they do not require additional
assumptions about investor preferences for risk or additional securities that
can be used to hedge volatility or jump risk. Therefore, only the parameters
that govern the volatility process need be estimated.

II. The Implied Tree Approach

The implied tree approach developed by Derman and Kani ~1994a,b!, Dupire
~1994!, and Rubinstein ~1994! assumes the local volatility rate is a f lexible
but deterministic function of the asset price and time. The aim of the ap-
proach is to develop an asset price lattice that is consistent with a cross
section of option prices. The general procedure for doing this involves: ~a!
estimating the risk-neutral probability distribution of asset prices at the end
of the lattice, and ~b! determining the up and down step sizes and probabil-
ities throughout the lattice that are consistent with the implied probability
distribution.

The implied probability distributions obtained from step ~a! typically seem
consistent with the apparent deficiencies of the Black–Scholes model. In
particular, for S&P 500 options, the distributions tend to exhibit negative
skewness and excess kurtosis relative to the lognormal distribution. The
excess kurtosis is a well-known feature of historical stock returns and the
skewness is consistent with the notion that after the crash investors in-
creased their assessment of the probability of stock market declines. Indeed,
as Rubinstein reports, the implied probability assessment of decreases is so
severe that it is “quite common” to observe a bimodal distribution. In other
words, for index levels far enough below the mean, the implied probability
actually increases.

Step ~b! in the approach involves constructing the asset price tree. At any
node in the tree, we can deduce the move volatility, which in the limit con-
verges to the local volatility rate, s~S, t!. The structure of these volatilities
is typically consistent with the empirical evidence regarding stock volatility.
Specifically, an inverse relation exists between the index level and volatility—
as the index falls, volatility increases ~Black ~1976!!. Moreover, the relation
is asymmetric—the increase in volatility for decreases in the index tends to
be larger than the decrease in volatility for higher index levels ~Schwert
~1989, 1990!!.

The reasonableness of these implied dynamics provides indirect support
for the implied tree approach. But, given the many potential applications
stemming from this approach, more comprehensive tests seem necessary.
The approach yields an estimate of how the asset price evolves over time,
and this estimate could be used to value other derivatives on the same asset
~e.g., American and exotic options! or as the basis for more exact hedge ratios.
Moreover, to the extent that the asset is a stock market index, the estimates
could be used in more general asset pricing and volatility estimation con-
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texts. The reliability of the approach in these settings depends critically on
how well we can estimate the dynamics of the underlying asset price from a
cross section of option prices. This assessment is the purpose of this paper.

III. Empirical Methodology

In this section, we begin by describing the intuition for our valuation method
vis-à-vis the implied tree approach. As in the implied tree approach, our
method assumes the local volatility rate is a deterministic function of asset
price and time. Next we provide a formal description of the deterministic
volatility function valuation framework, and we specify the structure of the
volatility functions that we test in our analysis. The final subsection de-
scribes the data.

A. Intuition

The implied tree approach uses a cross section of option prices to imply
the tree ~and, hence, to implicitly estimate the volatility function! that achieves
an exact fit of observed option prices. An exact fit is possible because there
are as many degrees of freedom in defining the tree as there are observed
option prices. With so much freedom in parameter selection, however, the
possibility exists that the approach overfits the data.

We examine this possibility by evaluating the time-series reliability of the
implied parameter estimates. The logic of our test is straightforward. First,
we use today’s option prices to estimate the parameters of the underlying
process, that is, the implied tree. Then, we step forward in time. If the orig-
inal tree was correct, then the subtree stemming out of the node realized
today must again be correct. Equivalently, option values from this subtree
~using the new asset price! should be correct. If, however, the volatility func-
tion is not stable through time, then the out-of-sample option values are
inaccurate. This finding suggests that the cross-sectional fit has not identi-
fied the true volatility function or the true stochastic process for the under-
lying asset.

Using a tree-based approach to implement this test suffers from a practi-
cal limitation. Suppose we estimate an implied tree today, and then step
forward in time to use the remainder of the tree. The likelihood that the
realized asset price falls exactly on a node of our original tree is remote.
Indeed, the realized price is virtually certain to fall between nodes or en-
tirely outside the span of the tree. Consequently, using the tree for out-of-
sample option valuation would require interpolation or extrapolation
techniques.

To avoid this complication, we specify from the start an interpolative func-
tional form for the volatility process. We consider a number of alternatives
based on a Taylor series approximation in S and t. Once we specify the
function, we can estimate its parameters by obtaining the best fit of the
option values under deterministic volatility with the observed option prices.
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This deterministic volatility function ~DVF! approach to fitting the data is
slightly different from the implied tree approach, but the spirit of the two
approaches is the same. Both fundamentally concern obtaining estimates of
the deterministic volatility function. What we will show is that, even with
fairly parsimonious models of the volatility process, we achieve an “almost
exact” fit of observed option prices. The crucial question, then, concerns the
stability of these estimates over time. Using more elaborate models such as
those embedded in the lattice-based approaches presents an even greater
danger of overfitting reported prices and deteriorating the quality of prediction.

The fact that we allow for pricing errors in our approach may seem in-
consistent with the implied tree approach. Rubinstein requires that all op-
tion values computed using the implied tree fall within their respective bid
and ask prices observed in the market—that is, that no arbitrage opportu-
nities exist. More recent research, however, relaxes this requirement. Jack-
werth and Rubinstein ~1996!, for example, advocate using bid0ask midpoint
prices, as we do, rather than the bid0ask band due to the tendency to “~over-
fit! the data by following all the small wiggles” when the no-arbitrage con-
straint is imposed. As a result, they allow for “small” deviations from market
prices, and use the sum of squared dollar errors ~as we do also! in their
objective function in fitting the implied tree.

B. Option Valuation under Deterministic Volatility

Option valuation when the local volatility rate is a deterministic function
of asset price and time is straightforward. In this case, the partial differen-
tial equation describing the option price dynamics is the familiar Black–
Scholes ~1973! equation,

2
1

2
s2~F, t!F 2

?2c

?F 2
5
?c

?t
, ~4!

where F is the forward asset price for delivery on the expiration date of the
option, c is the forward option price, s~F, t! is the local volatility of the price
F, and t is current time.8 We use forward prices, rather than spot prices, for
both the option and the underlying asset to avoid the issue of randomly
f luctuating interest rates.

Equation ~4! is called the backward equation of the Black–Scholes model
~expressed in terms of forward prices!. The call option value is a function of
F and t for a fixed exercise price X and date of expiration T. At time t when
F is known, however, the cross section of option prices ~with different exer-
cise prices and expiration dates! can also be considered to be functionally

8 Bergman, Grundy, and Wiener ~1996! examine the implications of specifying volatility as a
function of the underlying spot or forward asset price. They also illustrate a number of reasons
for which volatility may be a ~possibly nonmonotonic! function of the asset price.

Implied Volatility Functions: Empirical Tests 2067



related to X and T. For European-style options, Breeden and Litzenberger
~1978! and Dupire ~1994! show that the forward option value, c~X,T !, must
be a solution of the forward partial differential equation,9

1

2
s2~X,T !X 2

?2c

?X 2
5
?c

?T
, ~5!

with the associated initial condition, c~X,0! 5 max~F 2 X,0!. The volatility
function in equation ~5! is the same one as in equation ~4!, but the argu-
ments, F and t, are replaced by X and T. Equation ~4! requires the local
volatility that prevails at the present time when the date is t and the index
level is F; equation ~5! uses the future local volatility that will prevail on the
expiration date, T, when the underlying index is then at level X.

The advantage of using the forward equation to value European-style op-
tions ~such as those on the S&P 500 index! is that all option series with a
common time to expiration can be valued simultaneously—a considerable
computational cost saving when using numerical procedures.10 To infer vol-
atility functions from American-style option prices, however, requires solv-
ing the backward equation ~4! for each option series.

C. Specifying the Volatility Function

We estimate the volatility function, s~X,T !, by fitting the DVF option
valuation model to reported option prices at time t. Because s~X,T ! is an
arbitrary function, we posit a number of different structural forms including:

Model 0: s 5 max~0.01,a0!; ~6!

Model 1: s 5 max~0.01,a0 1 a1 X 1 a2 X 2 !; ~7!

Model 2: s 5 max~0.01,a0 1 a1 X 1 a2 X 2 1 a3T 1 a5 XT !; and ~8!

Model 3: s 5 max~0.01,a0 1 a1 X 1 a2 X 2 1 a3T 1 a4T 2 1 a5 XT !. ~9!

Model 0 is the volatility function of the Black–Scholes constant volatility
model. Model 1 attempts to capture variation in volatility attributable to
asset price, and Models 2 and 3 capture additional variation attributable to
time. A minimum value of the local volatility rate is imposed to prevent
negative values.

9 Because the option price, c, and the underlying asset price, F, are expressed as forward
prices ~forward to the maturity date of the option!, equations ~4! and ~5! ignore interest and
dividends. We account for these factors in our definition of forward prices. See Section III.D
below.

10 We solve equation ~5! using the Crank–Nicholson finite-difference method.
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We choose quadratic forms for the volatility function, in part because the
Black–Scholes implied volatilities for S&P 500 options tend to have a para-
bolic shape. The volatility function could also be estimated using more f lex-
ible nonparametric methods such as kernel regressions11 or splines. As noted
above, however, we want to avoid overparameterization. In Section VII be-
low, we verify that the quadratic form of the DVF, despite the parabolic
branches, leads to robust empirical results.

D. Data Selection

Our sample contains reported prices of S&P 500 index options traded on
the Chicago Board Options Exchange ~CBOE! over the period June 1988
through December 1993.12 S&P 500 options are European-style and expire
on the third Friday of the contract month. Originally, these options expired
only at the market close and were denoted by the ticker symbol SPX. In
June 1987, when the Chicago Mercantile Exchange ~CME! changed its S&P
500 futures expiration from the close to the open, the CBOE introduced a
second set of options with the ticker symbol NSX that expired at the open.
Over time, the trading volume of this “open-expiry” series grew to surpass
that of the “close-expiry” series, and on August 24, 1992, the CBOE reversed
the ticker symbols of the two series. Our sample contains SPX options through-
out: close-expiry until August 24, 1992, and open-expiry thereafter. During
the first subperiod, the option’s time to expiration is measured as the num-
ber of calendar days between the trade date and the expiration date; during
the second, we use the number of calendar days remaining less one.

As we noted earlier, we estimate each of the volatility functions once each
week during the sample. We use Wednesdays for these estimations because
fewer holidays fall on a Wednesday than on any other trading day. When a
particular Wednesday is a holiday, we use the immediately preceding trad-
ing day.

To estimate the volatility functions, we express both the index level and
option price as forward prices. Constructing the forward index level requires
the term structure of default-free interest rates and the daily cash dividends
on the index portfolio. We proxy for the riskless interest rate by using the
T-bill rates implied by the average of the bid and ask discounts reported in
the Wall Street Journal. The ti-period interest rate is obtained by interpolat-
ing the rates for the two T-bills whose maturities straddle ti . The daily cash
dividends for the S&P 500 index portfolio are collected from the S&P 500
Information Bulletin. To compute the present value of the dividends paid

11 See Ait-Sahalia and Lo ~1998!.
12 The sample begins in June 1988 because it was the first month for which Standard and

Poors began reporting daily cash dividends for the S&P 500 index portfolio. See Harvey and
Whaley ~1992! regarding the importance of incorporating discrete daily cash dividends in index
option valuation.
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during the option’s life, PVD, the daily dividends are discounted at the rates
corresponding to the ex-dividend dates and summed over the life of the
option; that is,

PVD 5 (
i51

n

Di e2ri ti, ~10!

where Di is the ith cash dividend payment, ti is the time to ex-dividend from
the current date, ri is the ti-period riskless interest rate, and n is the num-
ber of dividend payments during the option’s life.13 The implied forward
price of the S&P 500 index is therefore

F 5 ~S 2 PVD!erT, ~11!

where S is the reported index level and T is the time to expiration of the
option. To create a forward option price, we multiply the average of the
option’s bid and ask price quotes14 by the interest accumulation factor ap-
propriate to the option’s expiration, erT.

Three exclusionary criteria are applied to the data. First, we eliminate
options with fewer than six or more than one hundred days to expiration.
The shorter-term options have relatively small time premiums, hence the
estimation of volatility is extremely sensitive to nonsynchronous option prices
and other possible measurement errors. The longer-term options, on the other
hand, are unnecessary because our objective is only to determine whether
the volatility function remains valid over a span of one week. Including these
options would simply deteriorate the cross-sectional fit.

Second, we eliminate options whose absolute “moneyness,” 6X0F 2 16, is
greater than 10 percent. Like extremely short-term options, deep in- and
out-of-the-money options have small time premiums and hence contain little
information about the volatility function. Moreover, these options are not
actively traded, and price quotes are generally not supported by actual trades.

Finally, we only use those options with bid0ask price quotes during the
last half hour of trading ~2:45 to 3:15 p.m. ~CST!!. Fearing imperfect syn-
chronization with the option market,15 we do not use the reported S&P 500

13 The convention introduces an inconsistency, with small consequences, between option prices
of different maturities. The inconsistency takes two forms. First, our forward index level as-
sumes that the dividends to be paid during the option’s life are certain, so the index cannot fall
below the promised amount of dividends during this period. This barrier is different for each
maturity date. This is an inconsistency in the specification of the process for the index. Second,
the volatility function that we are estimating is actually a volatility of the forward price to the
maturity date of the option. To be completely rigorous, we should model the forward price
process for each maturity, with the appropriate cross-maturity constraints on price imposed,
and estimate a separate volatility function for each.

14 Using bid0ask midpoints rather than trade prices reduces noise in the cross-sectional es-
timation of the volatility function.

15 See Fleming, Ostdiek, and Whaley ~1996!.
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index level or the S&P 500 futures price16 in our estimation. Instead, we
infer the current index level simultaneously,17 together with the parameters
of the volatility function, from the cross section of option prices. In this way,
our empirical procedure relies only on observations from a single market,
with no auxiliary assumption of market integration.18 The procedure, how-
ever, requires that the option prices are reasonably synchronous—hence the
need for a tight time window. The cost of this criterion is a reduction in the
number of option quotes, but the cost is not too onerous because we have
quotes for an average of 44 ~and a range from 14 to 87! option series during
the last half-hour each Wednesday.19 Seventeen of the 292 Wednesday cross
sections had only one contract expiration available; 141 had two; 129 had
three; and 5 had four.

IV. Estimation Results

Using the S&P 500 index option data described in the previous section, we
now estimate the four volatility functions specified in equations ~6! through
~9!. As noted earlier, Model 0 is the Black–Scholes constant volatility model.
Model 1 allows the volatility rate to vary with the index level but not with
time. Models 2 and 3 attempt to capture additional variation due to time. A
fifth volatility function, denoted Model S, is also estimated. Model S switches
among the volatility functions given by Models 1, 2, and 3, depending on whether
the number of different option expiration dates in a given cross section is one,
two, or three, respectively. Model S is introduced because some cross sections
have fewer expiration dates available, undermining our ability to estimate
precisely the relation between the local volatility rate and time.

This section focuses on identifying the “best” volatility function given the
structure of S&P 500 index option prices. First, each local volatility function
is estimated by minimizing the sum of squared dollar errors between the
reported option prices and their DVF model values. Summary statistics on
the goodness-of-fit and on coefficient stability are provided. Next, we illus-
trate the shape of the implied probability functions for options of different
times to expiration.

16 For a detailed description of the problems of using a reported index level in computing
implied volatility, see Whaley ~1993, Appendix!.

17 In doing so, we impose the “cross-futures constraint” that the futures prices for different
maturities should ref lect the same underlying cash index level.

18 This is not quite true since we use Treasury bill rates in computing forward prices.
19 To assess the reasonableness of using the 2:45 to 3:15 p.m. window for estimation, we

compute the mean absolute return and the standard deviation of return of the nearby S&P 500
futures ~with at least six days to expiration! by fifteen-minute intervals throughout the trading
day across the days of the sample period. The results indicate that the lowest mean absolute
return and standard deviation of return occur just before noon. The end-of-day window is only
slightly higher, but the beginning-of-day window is nearly double. We choose to stay with the
end-of-day window for ease in interpreting the results.
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A. Goodness-of-Fit

To assess the quality of the fitted models, five measurements are made
each week. These are defined as follows:

~i! The root mean squared valuation error ~RMSVE! is the square root of
the average squared deviations of the reported option prices from the
model’s theoretical values.

~ii! The mean outside error ~MOE! is the average valuation error outside
the bid0ask spread. If the theoretical value is below ~exceeds! the
option’s bid ~ask! price, the error is defined as the difference between
the theoretical value and the bid ~ask! price, and, if the theoretical
value is within the spread, the error is set equal to zero. A positive
value of MOE, therefore, means that the model value is too high on
average, and a negative value means the model value is too low. This
measure is used primarily to detect biases in specific option categories.

~iii! The average absolute error ~MAE! is the average absolute valuation
error outside the bid0ask spread. This measure illustrates the exact-
ness with which each model fits within the quoted bid and ask prices
over all option categories.

~iv! The frequency ~FREQ! indicates the proportion of observations where
the specified model has a lower RMSVE than Model S.

~v! Finally, the Akaike ~1973! Information Criterion ~AIC! is calculated
to appraise the potential degree of overfitting. The AIC penalizes the
goodness-of-fit as more degrees of freedom are added to the model in
a manner similar to an adjusted R2. The lowest value of the AIC
identifies the “best” model based on in-sample performance. Of course,
overfitting is best detected by going out of sample ~see Section V!.

Table I contains the average RMSVEs, MOEs, and MAEs across the
292 days ~one day each week! during the sample period of June 1988 through
December 1993. The average RMSVE results show a strong relationship be-
tween the local volatility rate and the asset price. Where the volatility rate
is a quadratic function of asset price ~Model 1!, the average RMSVE of the
DVF model is less than one-half that of the Black–Scholes constant volatility
model ~Model 0!, 30.1 cents versus 65.0 cents, for all options in the sample.
Time variation also appears important. In moving from Model 1 to Model 2,
the average RMSVE in the full sample is reduced even more ~from 30.1 cents
to 23.0 cents!, albeit not so dramatically. The addition of the time variable to
the volatility function appears to be important, although most of the incre-
mental explanatory power appears to come from the cross-product term, XT.20

Adding a quadratic time to expiration term ~Model 3! reduces the average
RMSVE to its lowest level of the assumed specifications, 22.6 cents. Model
S’s RMSVE is virtually the same. The average MOE and MAE measurement

20 Model 2 is also estimated without the time variable with little difference in explanatory
power.
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criteria lead to the same conclusions for the overall sample. The MAE shows
that with Model 3 an essentially exact fit, within the bid-ask spread, has
been achieved because the average absolute error outside the spread is a
mere 5 cents.

Once goodness-of-fit is adjusted to account for the number of parameters
in the volatility function, more parsimonious volatility functions appear to
work best. The AIC results are reported in Table I as the proportion of days
during the sample period that a particular model is judged the best speci-
fication. The results indicate that Model 2 provides the best fit of the cross
section of S&P 500 index option prices, having the lowest AIC in 67.1 per-
cent of the 292 days in the sample. The next best performer is Model 1,
which is even more parsimonious than Model 2 and does not have time vari-
ation in the local volatility rate function, outperforming the other models in
25.7 percent of the days in the sample. The more elaborate Model 3, which
had the lowest RMSVE, does not perform well once the penalty for the ad-
ditional variables is imposed—performing best in less that 7 percent of the
days in the sample. All in all, the results indicate that the deterministic
volatility function need not be very elaborate to describe the observed struc-
ture of index option prices accurately.

The MOE values reported for the Black–Scholes model ~Model 0! show
that the theoretical value exceeds the ask price on average for call options,
16.6 cents, and is below the bid price for put options, 223.9 cents. This
behavior arises from the character of our sample ~i.e., the number of calls
versus the number of puts, and the number of in-the-money options versus
the number of out-of-the-money options!. When the options are stratified by
option type and moneyness, the Black–Scholes model value appears to be too
low ~relative to the bid price! for in-the-money calls and for out-of-the-money
puts. This is consistent with the implied volatility sneer shown in Figure 1.
With all options forced to have the same volatility in the estimation of Model
0, the variation in implied volatility translates into valuation errors. Op-
tions with Black–Scholes implied volatilities higher ~lower! than average are
valued too low ~high!.

Figure 3 shows the dollar valuation errors ~i.e., the model values less the
bid0ask midpoints! of Model 0 for the subsample of call options with 40 to
70 days to expiration. Also shown are normalized bid0ask spreads ~i.e., the
bid0ask prices less the bid0ask midpoint!. Note first that the bid0ask spreads
are as high as one dollar for deep in-the-money calls on the left of the figure.
As we move right along the horizontal axis, the maximum bid0ask spread
stays at a dollar until the moneyness variable is about 22.5 percent, and
then the maximum spread begins to decrease as the calls move further out-
of-the-money. This spread behavior is consistent with the CBOE’s maximum
spread rules described earlier. The average bid0ask spread across all option
series used in our estimation is approximately 47 cents.

Figure 4 shows the valuation errors of Model 3 for calls with 40 to 70 days
to expiration. The DVF model improves the cross-sectional fit. Where the
valuation errors are outside the bid0ask spread, they appear randomly, with
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Table I

Average S&P 500 Index Option Dollar Valuation Errors Using the Deterministic
Volatility Function (DVF) Model

RMSVE is the root mean squared dollar valuation error averaged across all days in the sample period from June 1988 through December 1993.
MOE is the average of the mean valuation error outside the observed bid0ask quotes across all days in the sample ~a positive value indicates the
theoretical value exceeds the ask price on average; a negative value indicates the theoretical value is below the bid price!. MAE is the average of the
mean absolute valuation error outside the observed bid0ask quotes across all days in the sample. AIC is the proportion of days during the sample
period that the model is judged best by the Akaike Information Criterion. FREQ is the frequency of days, expressed as a ratio of the total number
of days, on which a particular model has a lower daily RMSVE than Model S. Model 0 is the Black0Scholes constant volatility model. Models 1,
2, and 3 specify that the local volatility rate is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X, X 2, T, T 2, and XT, respectively, where X
is the option’s exercise price and T is its time to expiration. Model S switches between Models 1, 2, and 3 depending upon whether the number
of option expirations in the cross-section is one, two or three, respectively. Moneyness is defined as X0F 2 1, where F is the forward index level.

Panel A: Aggregate Results

All Options Call Options Put OptionsDVF
model RMSVE MOE MAE AIC RMSVE MOE MAE RMSVE MOE MAE

0 0.650 20.034 0.348 0.003 0.651 0.166 0.360 0.643 20.239 0.338
1 0.301 0.022 0.095 0.257 0.300 0.036 0.095 0.296 0.009 0.096
2 0.230 20.009 0.052 0.671 0.222 0.000 0.047 0.233 20.020 0.058
3 0.226 20.011 0.050 0.062 0.218 20.002 0.044 0.230 20.020 0.057
S 0.227 20.010 0.050 0.007 0.218 20.002 0.050 0.230 20.020 0.057

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper
DVF

model RMSVE MOE FREQ RMSVE MOE FREQ RMSVE MOE FREQ

Panel B: Call Options Only

210 25 0 0.313 0.000 0.429 0.644 20.290 0.042 1.051 20.623 0.016
1 0.236 20.012 0.593 0.246 20.021 0.491 0.342 20.035 0.210
2 0.257 20.026 0.271 0.224 20.014 0.241 0.234 20.002 0.306
3 0.259 20.027 0.214 0.221 20.013 0.264 0.220 0.003 0.073
S 0.259 20.027 0.223 20.014 0.220 0.003
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25 0 0 0.401 0.143 0.133 0.403 20.075 0.124 0.583 20.227 0.091
1 0.352 0.136 0.179 0.228 0.023 0.434 0.255 20.029 0.462
2 0.205 0.020 0.218 0.192 0.014 0.239 0.210 0.022 0.394
3 0.197 0.014 0.267 0.187 0.012 0.248 0.205 0.026 0.053
S 0.198 0.014 0.187 0.012 0.205 0.026

0 5 0 0.721 0.607 0.014 0.836 0.661 0.000 0.850 0.627 0.016
1 0.384 0.251 0.087 0.234 0.037 0.347 0.260 20.099 0.315
2 0.177 0.058 0.225 0.180 0.014 0.216 0.198 20.027 0.386
3 0.166 0.047 0.293 0.171 0.007 0.266 0.189 20.021 0.087
S 0.167 0.048 0.173 0.008 0.189 20.021

5 10 0 0.441 0.367 0.228 0.905 0.804 0.028 1.096 0.975 0.014
1 0.154 20.020 0.574 0.203 20.094 0.491 0.317 20.205 0.108
2 0.150 20.081 0.277 0.204 20.102 0.245 0.241 20.130 0.297
3 0.151 20.082 0.287 0.205 20.108 0.236 0.245 20.135 0.068
S 0.151 20.082 0.207 20.107 0.246 20.135

Panel C: Put Options Only

210 25 0 0.608 20.524 0.000 1.193 21.073 0.000 1.660 21.521 0.000
1 0.188 20.114 0.792 0.216 20.108 0.473 0.308 20.176 0.177
2 0.237 20.163 0.242 0.201 20.096 0.234 0.161 20.049 0.365
3 0.237 20.164 0.273 0.194 20.088 0.228 0.152 20.035 0.073
S 0.238 20.165 0.196 20.091 0.152 20.035

25 0 0 0.446 20.287 0.054 0.753 20.546 0.010 1.018 20.769 0.024
1 0.291 0.123 0.200 0.197 0.006 0.406 0.218 20.047 0.435
2 0.166 20.020 0.275 0.154 20.003 0.238 0.182 0.026 0.347
3 0.162 20.026 0.279 0.152 20.001 0.218 0.181 0.037 0.081
S 0.162 20.026 0.151 20.002 0.181 0.037

0 5 0 0.299 0.046 0.268 0.335 0.080 0.231 0.435 0.103 0.190
1 0.353 0.129 0.137 0.235 0.016 0.330 0.284 20.057 0.254
2 0.206 0.012 0.243 0.192 0.002 0.245 0.224 20.003 0.397
3 0.203 0.010 0.289 0.190 0.000 0.208 0.225 20.001 0.071
S 0.203 0.010 0.190 0.001 0.225 20.001

5 10 0 0.409 20.063 0.224 0.369 0.076 0.405 0.610 0.233 0.230
1 0.247 0.021 0.513 0.294 20.035 0.386 0.367 20.058 0.190
2 0.244 0.016 0.194 0.291 20.036 0.203 0.314 20.038 0.330
3 0.243 0.016 0.259 0.291 20.037 0.229 0.309 20.037 0.060
S 0.243 0.016 0.291 20.036 0.310 20.037
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a slight tendency for the DVF model to undervalue deep in-the-money and
deep out-of-the-money calls and to overvalue at-the-money calls. Overall,
however, Model 3’s fit appears quite good. The MOE across all calls in this
category is just 22.6 cents, in contrast to an MOE of more than 25 cents for
the Black–Scholes model.

Model 3 also appears to eliminate the relation between valuation error and
the option’s days to expiration. For the Black–Scholes model, the valuation
errors generally increase with days to expiration. For deep in-the-money calls
with fewer than 40 days to expiration, for example, the RMSVE is 31.3 cents;
it is 64.4 cents for calls between 40 and 70 days to expiration; and 105.1 cents
for calls with more than 70 days to expiration. For the same call options, the
RMSVEs for Model 3 are 25.9, 22.1, and 22.0 cents, respectively.

The results in Table I support the notion that a relatively parsimonious
model can accurately describe the observed structure of S&P 500 index op-
tion prices.21 The implied tree approach can achieve an exact fit of option
prices by permitting as many degrees of freedom as there are option prices.
Our results suggest that such a complete parameterization may be undesir-
able. Based on the AIC, Model 2 does “best,” with the local volatility rate
being a function of X, X 2, T, and XT. Moreover, where Model 2 does not

21 To test if the estimation results are driven by the presence of outliers, we examine the
valuation errors of the various models. We identify unusually large errors for three days during
the sample period. When we eliminate these days from the summary results, the magnitudes
of the average errors reported in Table I are reduced by only small amounts. Consequently, we
report the results for the full sample.

Figure 3. Dollar valuation estimation errors of Deterministic Volatility Function Model
0 (i.e., the Black–Scholes model) for S&P 500 call options with 40 to 70 days to expi-
ration. The solid squares correspond to normalized bid0ask price quotes ~i.e., the bid and ask
prices less the average of the bid and ask prices!. The circles correspond to valuation errors
~i.e., the theoretical option value less the bid0ask midpoint!. Moneyness is defined as X0F 2 1,
where F is the forward index level and X is the option’s exercise price.
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perform best, the more parsimonious Model 1, with local volatility being
only a function of X and X 2, usually does best. Together, these two simple
models outperform the others in 92.8 percent of the 292 cross sections of
index option prices examined. Based on these in-sample results, parsimony
in the specification of the volatility function appears to be warranted.

B. Average Parameter Estimates and Parameter Stability over Time

The average parameters estimated for each of the volatility functions are
also informative. Model 0 is, of course, the constant volatility model of Black–
Scholes. When this model is fitted each week during our 292-week sample
period, the mean estimated coefficient, Sa0, is 15.72 percent. Recall that Fig-
ure 2 shows the level of the Black–Scholes implied volatility on a week-by-
week basis. Over the sample period, implied market volatility fell from more
than 20 percent to less than 10 percent. Volatility reached a maximum of
27.16 percent on January 16, 1991, the height of the Gulf War. The mini-
mum implied volatility, 9.43 percent, occurred on December 29, 1993, the
last date of the sample period.

Model 3 has six parameters, and the averages ~standard deviations! of the
model’s six parameter estimates across the 292 cross sections are reported
in Panel A of Table II. The standard deviation of the parameter estimates
indicates that there is considerable variation in the coefficient estimates
from week to week, implying perhaps that the volatility function is not sta-
ble through time. If the parameter estimates are highly correlated, however,
the errors affecting them may cancel out when option prices are looked at.

Figure 4. Dollar valuation estimation errors of Deterministic Volatility Function Model
3 for S&P 500 call options with 40 to 70 days to expiration. The solid squares correspond
to normalized bid0ask price quotes ~i.e., the bid and ask prices less the average of the bid and
ask prices!. The circles correspond to valuation errors ~i.e., the theoretical option value less the
bid0ask midpoint!. Moneyness is defined as X0F 2 1, where F is the forward index level and X
is the option’s exercise price.
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To check this possibility, we compute the correlation among the parameter
estimates across the 292 weeks in the sample period and report them in
Panel B of Table II. As the values show, the correlations are generally quite
large. The correlation between the linear and quadratic terms in Model 3,
for example, is 20.969, indicating that in weeks where a1 is high, a2 is low
and vice versa.

In order to examine explicitly the issue of coefficient stability, Figure 5
has four panels containing plots of the time-series estimates of the Black–
Scholes implied volatility ~i.e., [a0 in Model 0! as well as of the time-series
estimates of the three main coefficients of Model 3 ~i.e., [a0, [a1, and [a2!. The
figures in Panels A and B indicate that the intercept coefficient of the DVF
function f luctuates largely in unison with the Black–Scholes implied vola-
tility. Week after week, the coefficient appears to simply record the move-
ments in the level of the volatility. It is to be suspected that, were the
coefficients kept constant from one week to the next, very little of the vol-
atility movement would be captured by the movement in the level of the
index itself. The plots in Figure 5 themselves are is not entirely meaningful,
however, since the movements in the individual coefficients are highly cor-

Table II

Summary Statistics of Parameter Estimates Obtained for
Deterministic Volatility Function (DVF) Model 3

Below are summary statistics from fitting Model 3 to the cross-section of S&P 500 index option
prices each week during the sample period from June 1988 through December 1993. Model 3
specifies that the local volatility rate is linear in X, X 2, T, T 2, and XT, where X is the option’s
exercise price and T is its time to expiration. The parameter estimates, a1, a2, a3, a4, and a5,
are the estimated coefficients of each of these terms, respectively. The parameter estimate, a0,
is the estimated intercept term.

Panel A: Means and Standard Deviations

Coefficient
Estimate Mean

Standard
Deviation

a0 131.8 69.5
a1 20.3529 0.447
a2 0.00008611 0.00768
a3 20.2260 1.94
a4 20.0001666 0.00237
a5 0.05275 0.0593

Panel B: Correlations

Coefficient
Estimate a2 a3 a4 a5

a1 20.969 0.596 20.811 20.291
a2 20.589 0.853 0.182
a3 20.114 20.232
a4 0.093
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related, and they may, to some extent, offset each other when combined to
generate fitted volatility levels. We are ultimately interested in the move-
ments of the fitted volatility in the neighborhood of the money.

To examine this further, Figure 6 shows the time series of the explained
at-the-money volatility of each week ~with contemporaneous coefficients! mi-
nus the explained at-the-money volatility of the same week calculated on the
basis of the previous week’s coefficients. The figure, therefore, portrays the
week-to-week changes in the level of the DVF function at the money which
result from changes in the coefficients, and which remain “unexplained” by
the DVF function and index level changes. It is apparent that these un-
explained weekly changes in ~annualized! volatility are very large and rou-
tinely reach several percentage points.

This evidence indicates that the in-sample estimates for the DVF model
seem to be unstable. This inference implies that changes in the coefficient
estimates may not be entirely due to economic factors, but may be the result
of overfitting. Therefore, it seems critical that we should measure the eco-
nomic significance of the DVF model in terms of valuation prediction errors.
This is exactly the procedure applied in Section V.

Panel A:

Panel B:

Panel C:

Panel D:

Figure 5. Parameter estimates for a0 of Model 0 (Panel A) and a0, a1, and a2 of Model
3 (Panels B, C, and D, respectively) each Wednesday during the sample period of June
1988 through December 1993. The parameter estimates are obtained by fitting Model 0 and
Model 3 to the cross section of S&P 500 index option prices each week.
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C. Implied Probability Distribution

The estimated coefficients of the volatility functions can also be used to
deduce the shape of the risk-neutral probability distribution at the option
expiration dates.22 To illustrate, we first use the estimated coefficients of
Model 3 on April 1, 1992. On April 1, 1992, the S&P 500 options had three
different expiration months, April, May, and June 1992, with 17, 45, and
80 days to expiration, respectively. Based on these expirations, the esti-
mated volatility function implies the three probability distributions shown
in Figure 7. All distributions are skewed to the left, exactly the opposite of
the right-skewness implied by the Black–Scholes assumption of lognormally
distributed asset prices. The wider variances for the May and then June
expirations merely ref lect the greater probability of large price moves over
a longer period of time. Our implied distributions do not exhibit the bimodal-
ity that was present in Rubinstein ~1994!. This likely results from the fact
that our volatility functions are more parsimonious than those implicitly
used within his binomial lattice framework.

V. Prediction Results

The estimation results reported in the last section indicate that the
volatility function embedded in index option prices is not particularly elab-
orate. The AIC indicates that only linear and quadratic terms in asset price

22 The identification of state price densities from option prices has been the goal of much of
David Bates’ work. See Bates ~1996a, 1996b!. See also Ait-Sahalia and Lo ~1998!.

Figure 6. Week-to-week change in the local volatility rate of Model 3 arising from
changes in the coefficient estimates, for the period June 1988 through December 1993.
The change is defined as the difference between the estimated local volatility rate at the cur-
rent index level using contemporaneous coefficient estimates of Model 3 less the estimated local
volatility rate using the previous week’s coefficient estimates.
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are necessary and only linear terms in time. A critical assumption of the
model, however, is that the volatility function is stable through time, an
assumption we already have reason to doubt. In this section, we evaluate
how well each week’s estimated volatility function values the same options
one week later.

A. Goodness-of-Fit

Table III provides the summary statistics for the prediction errors. The
RMSVE, MOE, and MAE values in the table are computed in the same man-
ner as in the previous section. The prediction errors are generally quite large,
at least relative to the estimation errors reported in Table I. The average
RMSVE reported in Panel A is about 56 cents out-of-sample across all days
for all DVF models except Model 0, and the in-sample error for these models
is about 23 cents. The MAE statistics tell essentially the same story but
more dramatically: The almost exact fit achieved for Model 3 ~i.e., a 5-cent
MAE in sample! has deteriorated to nearly 30 cents within a week. New
market information induces a shift in the level of overall market volatility
from week to week.

The prediction errors for calls and puts reported in Panel A are about the
same size. As in the case of the estimation errors, the average MOE for
Model 0 is positive for calls and negative for puts, depending on the char-
acter of the sample. When the options are stratified by option type and
moneyness, we see that the Black–Scholes model value is too low ~relative to
the bid price! for in-the-money calls and out-of-the-money puts and is too
high ~relative to the ask price! for out-of-the-money calls and in-the-money
puts. This pattern is particularly clear in Figure 8, which is the analogue of
Figure 3, but for the prediction stage.

Figure 7. Risk-neutral probability density functions for April, May, and June 1992
S&P 500 option expirations on April 1, 1992. The probability distributions are based on the
parameter estimates of Deterministic Volatility Function Model 3.
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Table III

Average S&P 500 Index Option Dollar Prediction Errors Using the Deterministic
Volatility Function (DVF) Model

RMSVE is the root mean squared dollar valuation error averaged across all days in the sample period from June 1988 through December 1993.
DRMSVE is the incremental RMSVE when comparing successive models. The t-ratio indicates the significance of that increment. MOE is the
average of the mean valuation error outside the observed bid0ask quotes across all days in the sample ~a positive value indicates the theoretical
value exceeds the ask price on average; a negative value indicates the theoretical value is below the bid price!. MAE is the average of the mean
absolute valuation error outside the observed bid0ask quotes across all days in the sample. FREQ is the frequency of days, expressed as a ratio
of the total number of days, on which a particular model has a lower daily RMSVE than the Ad Hoc Model. Model 0 is the Black0Scholes constant
volatility model. Models 1, 2, and 3 specify that the local volatility rate is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X, X 2, T, T 2, and
XT, respectively, where X is the option’s exercise price and T is its time to expiration. Model S switches between Models 1, 2, and 3 depending
upon whether the number of option expirations in the cross-section is one, two or three, respectively. The Ad Hoc ~AH! Model specifies that
Black0Scholes implied volatility is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X, X 2, T, T 2, and XT, respectively, depending upon whether
the number of option expirations in the cross-section is one, two or three. Moneyness is defined as X0F 2 1, where F is the forward index level.

Panel A: Aggregate Results

All Options Call Options Put optionsDVF
Model RMSVE DRMSVE t-ratio MOE MAE RMSVE DRMSVE t-ratio MOE MAE RMSVE DRMSVE t-ratio MOE MAE

0 0.784 20.017 0.449 0.790 0.180 0.458 0.762 20.219 0.440
1 0.557 20.227 27.26 20.043 0.285 0.556 20.234 27.85 20.022 0.284 0.551 20.211 26.62 20.064 0.289
2 0.559 0.002 0.15 20.067 0.294 0.551 20.005 20.28 20.045 0.287 0.562 0.011 0.78 20.091 0.305
3 0.556 20.003 21.19 20.065 0.291 0.549 20.002 20.60 20.044 0.285 0.557 20.005 21.82 20.088 0.300
S 0.555 20.001 20.61 20.066 0.292 0.548 20.001 21.05 20.045 0.286 0.557 0.000 20.09 20.090 0.301

AH 0.498 20.057 22.46 20.054 0.238 0.491 20.057 22.19 20.002 0.235 0.493 20.064 22.85 20.107 0.243
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Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper
DVF

Model RMSVE MOE FREQ RMSVE MOE FREQ RMSVE MOE FREQ

Panel B: Call Options Only

210 25 0 0.348 20.004 0.484 0.640 20.290 0.332 1.106 20.688 0.073
1 0.310 20.024 0.609 0.436 20.082 0.469 0.602 20.180 0.419
2 0.324 20.045 0.534 0.458 20.096 0.417 0.607 20.057 0.476
3 0.330 20.045 0.523 0.461 20.098 0.417 0.604 20.049 0.444
S 0.328 20.047 0.516 0.459 20.098 0.427 0.603 20.051 0.452

AH 0.344 20.016 0.443 20.079 0.553 20.107
25 0 0 0.524 0.179 0.377 0.625 20.063 0.347 0.794 20.325 0.212

1 0.472 0.136 0.444 0.547 20.014 0.400 0.691 20.252 0.364
2 0.425 0.015 0.489 0.577 20.067 0.396 0.713 20.057 0.386
3 0.428 0.010 0.500 0.583 20.069 0.382 0.706 20.036 0.379
S 0.426 0.009 0.500 0.581 20.069 0.382 0.707 20.040 0.379

AH 0.428 0.084 0.469 20.023 0.545 20.119
0 5 0 0.799 0.656 0.142 0.989 0.743 0.149 0.930 0.599 0.213

1 0.504 0.234 0.396 0.571 20.025 0.385 0.664 20.313 0.409
2 0.428 0.062 0.458 0.589 20.108 0.353 0.710 20.100 0.370
3 0.424 0.054 0.476 0.592 20.114 0.353 0.686 20.080 0.378
S 0.425 0.054 0.476 0.593 20.114 0.353 0.692 20.082 0.370

AH 0.408 0.163 0.443 0.008 0.507 20.172
5 10 0 0.475 0.397 0.257 0.981 0.860 0.113 1.042 0.921 0.149

1 0.220 20.010 0.525 0.364 20.105 0.472 0.461 20.252 0.459
2 0.222 20.066 0.436 0.389 20.156 0.425 0.461 20.088 0.554
3 0.221 20.068 0.436 0.394 20.162 0.406 0.469 20.096 0.527
S 0.222 20.067 0.436 0.394 20.162 0.406 0.466 20.095 0.527

AH 0.209 20.024 0.344 20.101 0.437 20.237
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Table III—Continued

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper
DVF

Model RMSVE MOE FREQ RMSVE MOE FREQ RMSVE MOE FREQ

Panel C: Put Options Only

210 25 0 0.591 20.502 0.039 1.176 21.051 0.024 1.742 21.602 0.010
1 0.276 20.127 0.615 0.440 20.200 0.506 0.623 20.362 0.313
2 0.309 20.176 0.459 0.479 20.232 0.434 0.532 20.215 0.396
3 0.313 20.173 0.468 0.475 20.225 0.434 0.520 20.189 0.438
S 0.310 20.177 0.468 0.477 20.227 0.434 0.522 20.189 0.438

AH 0.308 20.196 0.415 20.244 0.497 20.283
25 0 0 0.540 20.281 0.265 0.849 20.551 0.144 1.135 20.867 0.113

1 0.446 0.109 0.416 0.540 20.061 0.383 0.654 20.232 0.371
2 0.430 20.040 0.419 0.581 20.122 0.363 0.711 20.018 0.355
3 0.431 20.042 0.409 0.580 20.121 0.368 0.698 0.016 0.371
S 0.429 20.044 0.416 0.581 20.122 0.368 0.699 0.010 0.363

AH 0.369 20.050 0.434 20.115 0.511 20.130
0 5 0 0.443 0.081 0.435 0.611 0.156 0.393 0.691 0.077 0.357

1 0.484 0.117 0.406 0.579 20.066 0.422 0.714 20.293 0.413
2 0.446 20.002 0.435 0.615 20.132 0.398 0.775 20.135 0.405
3 0.443 20.003 0.435 0.615 20.133 0.403 0.751 20.112 0.421
S 0.444 20.004 0.442 0.616 20.133 0.403 0.754 20.116 0.421

AH 0.409 20.001 0.486 20.090 0.572 20.185
5 10 0 0.444 20.059 0.372 0.493 0.116 0.490 0.634 0.249 0.400

1 0.277 0.025 0.567 0.400 20.071 0.569 0.520 20.143 0.500
2 0.273 0.015 0.563 0.427 20.094 0.497 0.562 20.055 0.480
3 0.273 0.015 0.532 0.424 20.092 0.497 0.551 20.057 0.470
S 0.273 0.015 0.550 0.425 20.094 0.503 0.551 20.056 0.480

AH 0.347 20.037 0.459 20.103 0.508 20.125
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Interestingly, the average MOE is smaller for Model 1 than for Models 2,
3, and S. This suggests that the time variable in the more elaborate vola-
tility functions is unnecessary. Apparently, the time variable serves only to
overfit the data at the estimation stage. The fact that the valuation predic-
tion errors for the models that include the time variable are more negative
than those of Model 1 indicates that the implied volatility functions predict
a larger decrease in volatility over the week than actually transpires.

At-the-money options have the largest valuation prediction errors for all
times to expiration. This arises because at-the-money options are the most
sensitive to volatility ~where time premium is the highest!. For a given error
in the estimated volatility rate, the dollar valuation error is larger for at-
the-money options than for either in-the-money or out-of-the-money options.
Figure 9, which is the analogue of Figure 4, illustrates that the prediction
errors of Model 4 do not display the characteristic patterns across the spec-
trum of moneyness that we identify above for Model 0.

B. An “Ad Hoc” Strawman

A troubling aspect of the analysis thus far is that, although the RMSVEs
seem large for all practical purposes, we have not yet indicated what size of
prediction error should be considered “large.” One way to gauge the predic-
tion errors is to measure them against a benchmark. To account for the
sneer patterns in Black–Scholes implied volatilities, many marketmakers
simply smooth the implied volatility relation across exercise prices ~and days

Figure 8. Dollar valuation prediction errors of Deterministic Volatility Function Model
0 (i.e., the Black–Scholes model) for S&P 500 call options with 40 to 70 days to expi-
ration. The theoretical values are based on the implied volatility function from the previous
week. The solid squares correspond to normalized bid0ask price quotes ~i.e., the bid and ask
prices less the average of the bid and ask prices!. The circles correspond to valuation errors
~i.e., the theoretical option value less the bid0ask midpoint!. Moneyness is defined as X0F 2 1,
where F is the forward index level and X is the option’s exercise price.
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to expiration! and then value options using the smoothed relation. To oper-
ationalize this practice, we fit the Black–Scholes model to the reported struc-
ture of option prices each week using Model S to describe the Black–Scholes
implied volatility. Obviously, applying the Black–Scholes formula in this con-
text is internally inconsistent because the Black–Scholes formula is based
on an assumption of constant volatility. Nonetheless, the procedure is a vari-
ation of what is applied in practice as a means of predicting option prices.23

The DVF option valuation model, which is based on an internally consistent
specification, should dominate this “ad hoc” approach.

To create our strawman, we use a two-step procedure similar to the one we
used for the DVF models. On day t, we fit Model S to the Black–Scholes
implied volatilities, and then, on day t 1 7, we apply the Black–Scholes
formula using the volatility levels from estimated regression. The valuation
prediction errors computed in this fashion are also included in Table III. As
the table shows, the errors using the ad hoc model ~AH! are almost uni-
formly smaller than those of the DVF approach. The average RMSVE across
the entire sample period is 49.8 cents for the ad hoc Black–Scholes proce-
dure, whereas it is more than 55 cents for the best DVF option valuation
model. The average MAE is 23 cents for the ad hoc Black–Scholes procedure
and 28.5 cents for Model 1. In viewing the various option categories, the
greatest pricing improvement appears to be for at-the-money options, whose

23 The Black0Scholes procedure cannot serve to predict American or exotic option prices from
European option prices, which is the major benefit claimed for the implied volatility tree approach.

Figure 9. Dollar valuation prediction errors of Deterministic Volatility Function Model
3 for S&P 500 call options with 40 and 70 days to expiration. The theoretical values are
based on the implied volatility function from the previous week. The solid squares correspond
to normalized bid0ask price quotes ~i.e., the bid and ask prices less the average of the bid and
ask prices!. The circles correspond to valuation errors ~i.e., the theoretical option value less the
bid0ask midpoint!. Moneyness is defined as X0F 2 1, where F is the forward index level and X
is the option’s exercise price.
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average RMSVEs are reduced by 10 cents or more. Put simply, the deter-
ministic volatility approach does not appear to be an improvement over the,
albeit theoretically inconsistent, ad hoc procedure used in practice. One pos-
sible interpretation of this evidence is that there is little economic meaning
to the deterministic volatility function implied by option prices.

The reason the ad hoc strawman performs marginally better than the
DVF model can be seen by examination of Figure 10, which is identical in its
format to Figure 6; that is, we show the time series of the explained at-the-
money-implied volatility of each week ~with contemporaneous coefficients!
minus the explained at-the-money implied volatility of the same week cal-
culated on the basis of the previous week’s coefficients. A comparison of Fig-
ure 10 with Figure 6 shows that the coefficients of the ad hoc model are
somewhat more stable than those of the DVF Model 3.

C. A t-Test of Equivalence between the Various Models24

Panel A of Table III also reports the results of statistical tests of the equiv-
alence between models. The tests are based on West ~1996!, and, for ease of
reference, we use his notation. Let ft be the ~6 3 1! vector of root mean
squared prediction errors at time t corresponding to the six models 0, 1, 2, 3,
S, and AH. Let Ef be the population value, and let f be the sample average.
Then, if we know the population values for all the parameters, f 2 Ef is
asymptotically normal with the variance-covariance matrix:

Sff 5 (
j52`

`

E~ ft 2 Ef !~ ft2j 2 Ef !'. ~12!

On the basis of this observation and a generalized method of moments rea-
soning, we determine Nf, a 6 3 1 constant vector, such that

min
Nf

(
t

~ ft 2 Nf !'V~ ft 2 Nf !, ~13!

where V is the Newey-West heteroskedasticity-consistent, 6 3 6 variance-
covariance matrix with fifteen weekly lags which accounts for the possibility
of correlation across the models and serially correlated errors. In this way,
we obtain asymptotic t-ratios for the root mean square prediction errors of
our six models. Panel A of Table III reports both the incremental root mean
squared prediction errors of each model compared to the previous one in the
list as well as their corresponding t-ratios.

The test results reported in Table III indicate that DVF Model 1 is a sig-
nificant improvement over the straight Black–Scholes Model 0. The incre-
mental average root mean squared error is 222.7 cents and its t-ratio is
27.26. The incremental improvements in going from DVF Models 1 to 2,

24 We are extremely grateful to Ken West for his correspondence outlining the steps of the
procedure below.
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2 to 3, and 3 to S, however, are insignificant. Finally, the ad hoc model is an
improvement over the Model S. The incremental average root mean squared
error is 25.7 cents and its t-ratio is 22.46.25

VI. Hedging Results

A key motivation for developing the DVF option valuation model is to
provide better risk management. If volatility is a deterministic function of
asset price and time, then setting hedge ratios based on the DVF option
valuation model should present an improvement over the constant volatility
model. In this section, we evaluate the performance of a hedge portfolio
formed on day t and unwound one week later. Galai ~1983! shows that the
return on such a discretely adjusted option hedge portfolio has three com-
ponents: ~a! the riskless return on investment, ~b! the return from the dis-
crete adjustment of the hedge, and ~c! the return from the change in the
deviation of the actual option price from the change in the theoretical value.

25 Admittedly, the assumption that we know the population values for all the parameters is
incorrect. Each time we move down one week, we calculate the errors of the new week on the
basis of the parameters of the old week. The t-statistics do not take into account the standard
errors of the parameter estimation performed in the old week. As shown by West ~1996!, the
needed correction would depend on the expected value of the derivative of the prediction errors
taken with respect to the parameter values. This would require repeated numerical calculation
of the time series of errors, varying one parameter each time. There is no theoretical reason
why this derivative would be equal to zero in our application, whereas it would have been if our
estimators had been designed to optimize the prediction.

Figure 10. Week-to-week change in the volatility rate of the ad hoc Black–Scholes
model arising from changes in the coefficient estimates, for the period June 1988
through December 1993. The change is defined as the difference between the estimated
volatility rate at the current index level using contemporaneous coefficient estimates of the ad
hoc Black–Scholes model less the estimated volatility rate using the previous week’s coefficient
estimates.
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Since all option prices used in our analysis are forward prices, the riskless
return component of the hedge portfolio is zero. Furthermore, because our
focus is on model performance and not on the issues raised by discrete-
time readjustment, we assume that the hedge portfolio is continuously
rebalanced through time. Consequently, the hedge portfolio error is de-
fined as:

et 5 Dcactual, t 2 Dcmodel, t , ~14!

where Dcactual,t is the change in the reported option price from day t until
day t 1 7 and Dcmodel,t is the change in the model’s theoretical value.

The proof of equation ~14! is straightforward. The hedging error that re-
sults from the continuous rebalancing using the hedge ratio, h, is

Dcactual, t 2 E
t

t17

h~Su ,u!dSu . ~15!

If we had the correct model to determine h, the two quantities in equation
~15! would be equal to one another, not as a real number equality but with
probability one or at the very least in the sense that their difference would
have an expected value of zero and zero variance. Therefore, it must be the
case that the integral term equals Dcmodel,t . In other words, when the hedge
is continuously rebalanced, the hedging error is simply equal to the time
increment in the valuation error.

Table IV contains a summary of the hedging error results. Across the over-
all sample period, Model 0—the Black–Scholes constant-volatility model—
performs best of all the deterministic volatility function specifications. Its
average root mean squared hedging error ~RMSHE! is 45.5 cents, compared
with 48.9, 50.5, 50.6, and 50.5 cents for Models 1 through 3 and Model S,
respectively. The intuition for this result is that, although the model’s option
values are systematically incorrect, its errors are stable ~or, at least, strongly
serially dependent as suits a specification error!, unlike the less parsimoni-
ous models. Within the class of DVF models considered, the results again
indicate that, the more parsimonious volatility functions provide better hedg-
ing performance.

The ad hoc Black–Scholes procedure described in the preceding section
also performs well from a hedging standpoint. The average RMSHE is only
46.7 cents. Consistent with the prediction results reported in Table III, the
DVF option valuation model does not appear to be an improvement.

To further distinguish between the hedging errors of the different mod-
els, we run t-tests similar to the ones we performed for the prediction
errors. The results are shown in Panel A of Table IV. With a t-ratio of 1.99,
Model 1 represents a significant worsening relative to the plain Black–
Scholes model.
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Table IV

Average S&P 500 Index Option Dollar Hedging Errors Using the Deterministic
Volatility Function (DVF) Model

RMSHE is the root mean squared dollar hedging error averaged across all days in the sample period from June 1988 through December 1993.
DRMSHE is the incremental RMSHE when comparing successive models. The t-ratio indicates the significance of that increment. FREQ is the
frequency of days, expressed as a ratio of the total number of days, on which a particular model has a lower daily RMSHE than the Ad Hoc Model.
Models 1, 2, and 3 specify that the local volatility rate is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X, X 2, T, T 2, and XT, respectively,
where X is the option’s exercise price and T is its time to expiration. Model S switches between Models 1, 2, and 3 depending upon whether the
number of option expirations in the cross-section is one, two or three, respectively. The Ad Hoc ~AH! Model specifies that Black0Scholes implied
volatility is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X, X 2, T, T 2, and XT, respectively, depending upon whether the number of option
expirations in the cross-section is one, two or three. Moneyness is defined as X0F 2 1, where F is the forward index level.

Panel A: Aggregate Results

All Options Call Options Put OptionsDVF
Model RMSHE DRMSHE t-ratio RMSHE DRMSHE t-ratio RMSHE DRMSHE t-ratio

0 0.455 0.445 0.443
1 0.489 0.034 1.99 0.491 0.046 2.56 0.472 0.029 1.55
2 0.505 0.016 3.04 0.500 0.009 1.44 0.496 0.024 4.50
3 0.506 0.001 0.85 0.505 0.005 4.14 0.492 20.004 21.89
S 0.505 20.001 21.90 0.503 20.002 22.51 0.492 0.000 0.41

AH 0.467 20.038 22.13 0.454 20.049 22.39 0.450 20.042 22.42
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Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper
DVF

Model RMSHE FREQ RMSHE FREQ RMSHE FREQ

Panel B: Call Options Only

210 25 0 0.367 0.519 0.349 0.541 0.454 0.455
1 0.334 0.515 0.404 0.453 0.518 0.409
2 0.315 0.535 0.433 0.394 0.552 0.409
3 0.319 0.550 0.441 0.382 0.568 0.398
S 0.316 0.554 0.439 0.382 0.568 0.398

AH 0.370 0.388 0.482
25 0 0 0.406 0.534 0.394 0.591 0.489 0.473

1 0.466 0.455 0.524 0.403 0.642 0.333
2 0.452 0.487 0.560 0.333 0.673 0.344
3 0.457 0.484 0.569 0.328 0.686 0.333
S 0.454 0.487 0.567 0.328 0.686 0.333

AH 0.432 0.444 0.510
0 5 0 0.388 0.367 0.367 0.534 0.422 0.488

1 0.359 0.480 0.459 0.391 0.536 0.417
2 0.364 0.476 0.483 0.385 0.552 0.429
3 0.364 0.476 0.486 0.379 0.555 0.417
S 0.363 0.480 0.485 0.385 0.555 0.417

AH 0.335 0.384 0.443
5 10 0 0.431 0.245 0.381 0.250 0.363 0.303

1 0.203 0.510 0.256 0.462 0.304 0.485
2 0.169 0.551 0.238 0.500 0.301 0.394
3 0.168 0.571 0.238 0.500 0.306 0.394
S 0.169 0.571 0.237 0.500 0.307 0.394

AH 0.228 0.238 0.285
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Table IV—Continued

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper
DVF

Model RMSHE FREQ RMSHE FREQ RMSHE FREQ

Panel C: Put Options Only

210 25 0 0.277 0.353 0.292 0.370 0.421 0.510
1 0.252 0.419 0.352 0.380 0.473 0.429
2 0.241 0.443 0.395 0.360 0.539 0.388
3 0.240 0.455 0.395 0.360 0.540 0.367
S 0.239 0.461 0.396 0.370 0.541 0.367

AH 0.211 0.251 0.412
25 0 0 0.352 0.510 0.407 0.466 0.443 0.553

1 0.437 0.361 0.521 0.338 0.565 0.395
2 0.434 0.384 0.580 0.345 0.644 0.303
3 0.433 0.384 0.579 0.351 0.642 0.316
S 0.432 0.384 0.579 0.351 0.643 0.316

AH 0.348 0.402 0.464
0 5 0 0.420 0.506 0.443 0.509 0.479 0.607

1 0.388 0.557 0.515 0.509 0.544 0.506
2 0.408 0.502 0.551 0.441 0.596 0.461
3 0.404 0.524 0.547 0.460 0.588 0.449
S 0.405 0.531 0.547 0.460 0.588 0.449

AH 0.425 0.467 0.522
5 10 0 0.358 0.473 0.442 0.491 0.453 0.410

1 0.272 0.597 0.370 0.545 0.384 0.492
2 0.283 0.587 0.377 0.500 0.401 0.492
3 0.279 0.587 0.368 0.527 0.389 0.492
S 0.280 0.602 0.369 0.527 0.389 0.492

AH 0.359 0.429 0.397
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VII. Robustness

The results reported in the last three sections offer evidence that the vol-
atility functions implied by index option prices are not stable through time.
In developing our test procedures, however, we make a number of method-
ological decisions, some of which could be questioned in the sense that the
final results may have been different had other methodologies been adopted.
In this section, we investigate the robustness of our results by checking
three issues of this kind. The first issue pertains to the choice of the qua-
dratic functional forms given in equations ~6! through ~9!. In particular,
allowing volatility to grow quadratically with state variables violates the
slow-growth assumptions necessary for the existence of a solution to the
stochastic differential equation. The second issue pertains to the trade-off
between the cross-sectional and the time-series goodness-of-fit. Derman and
Kani ~1994a,b!, Dupire ~1994!, and Rubinstein ~1994! recommend using a
single cross section of option prices to parameterize the DVF model. In this
way, the arbitrage-free spirit of the model is maintained. But are the model’s
predictions improved by using multiple cross sections simultaneously? The
third issue concerns the uniformity of the results over various subsamples.
Does the DVF model work better during specific subperiods? We study these
three issues below.

A. Functional Form

The quadratic functional forms given in equations ~6! through ~9! may
seem questionable for two related reasons. First, the use of the parabolic
branches, for which there is no basis in fact and which are purely extrapo-
lative in nature, may inf luence our results. Of course, the probability weights
received by values of the underlying asset far from the current value become
extremely small very quickly ~at an exponential rate!, so they probably play
a negligible role in the analysis. Nonetheless, this conjecture is worth check-
ing. Second, it is questionable, mathematically speaking, to let the volatility
grow quadratically with the state variable because such a volatility function
violates the assumptions for existence of the solution of a stochastic differ-
ential equation ~so-called “slow-growth” and “Lipschitz” conditions!.

In order to allay these two fears simultaneously, we perform a simple ex-
periment. In place of estimating Model 3 in an unconstrained manner, we
truncate the local volatility rate at a maximum level of 50 percent annually,
that is,

Model 3t: s 5 max~0.01,min~a0 1 a1 X 1 a2 X 2 1 a3T 1 a4T 2 1 a5 XT,0.50!!,

~16!

and then redo all of the steps of the analysis. The results appear in Table V.
For convenience, the earlier results of Tables I, III, and IV for Model 3 are
also presented. Examining the various entries of the table, we find that the
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Table V

Average S&P 500 Index Option Dollar Valuation, Prediction, and Hedging Errors Using the
Deterministic Volatility Function (DVF) Model 3 without and with Maximum Truncation

RMSVE is the root mean squared dollar valuation error averaged across all days in the sample period from June 1988 through December 1993.
MOE is the average of the mean valuation error outside the observed bid0ask quotes across all days in the sample ~a positive value indicates the
theoretical value exceeds the ask price on average; a negative value indicates the theoretical value is below the bid price!. MAE is the average
of the mean absolute valuation error outside the observed bid0ask quotes across all days in the sample. “Estimation” refers to in-sample valuation
errors, “prediction” refers to out-of-sample valuation errors, and “hedge” refers to hedging errors. Model 3 specifies that the local volatility rate
is linear in X, X 2, T, T 2, and XT, where X is the option’s exercise price and T is its time to expiration. Model 3t has the same structural form
as Model 3 except that the local volatility rate is truncated at a maximum of 50 percent. Moneyness is defined as X0F 2 1, where F is the forward
index level.

Panel A: Aggregate Results

All Options Call Options Put Options

Test
DVF

Model RMSVE MOE MAE RMSVE MOE MAE RMSVE MOE MAE

Estimation 3 0.226 20.011 0.050 0.218 20.002 0.044 0.230 20.020 0.057
Estimation 3t 0.228 20.010 0.051 0.220 20.002 0.045 0.232 20.019 0.057
Prediction 3 0.556 20.065 0.291 0.549 20.044 0.285 0.557 20.088 0.300
Prediction 3t 0.556 20.067 0.292 0.549 20.046 0.286 0.557 20.089 0.301
Hedge 3 0.506 0.505 0.492
Hedge 3t 0.506 0.504 0.492
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Panel B: Call Options Only

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper Test
DVF

Model RMSVE MOE RMSVE MOE RMSVE MOE

210 25 estimation 3 0.259 20.027 0.221 20.013 0.220 0.003
estimation 3t 0.258 20.027 0.222 20.014 0.227 20.001
prediction 3 0.330 20.045 0.461 20.098 0.604 20.049
prediction 3t 0.327 20.046 0.459 20.096 0.605 20.070
hedge 3 0.319 0.441 0.568
hedge 3t 0.318 0.438 0.563

25 0 estimation 3 0.197 0.014 0.187 0.012 0.205 0.026
estimation 3t 0.201 0.018 0.190 0.014 0.209 0.023
prediction 3 0.428 0.010 0.583 20.069 0.706 20.036
prediction 3t 0.425 0.014 0.579 20.065 0.715 20.056
hedge 3 0.457 0.569 0.686
hedge 3t 0.456 0.568 0.681

0 5 estimation 3 0.166 0.047 0.171 0.007 0.189 20.021
estimation 3t 0.173 0.053 0.176 0.009 0.194 20.023
prediction 3 0.424 0.054 0.592 20.114 0.686 20.080
prediction 3t 0.424 0.058 0.588 20.109 0.697 20.098
hedge 3 0.364 0.486 0.555
hedge 3t 0.364 0.487 0.552

5 10 estimation 3 0.151 20.082 0.205 20.108 0.245 20.135
estimation 3t 0.151 20.081 0.204 20.107 0.248 20.137
prediction 3 0.221 20.068 0.394 20.162 0.469 20.096
prediction 3t 0.222 20.068 0.390 20.160 0.464 20.099
hedge 3 0.168 0.238 0.306
hedge 3t 0.168 0.241 0.301
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Table V—Continued

Panel C: Put Options Only

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper Test
DVF

Model RMSVE MOE RMSVE MOE RMSVE MOE

210 25 estimation 3 0.237 20.164 0.194 20.088 0.152 20.035
estimation 3t 0.236 20.162 0.194 20.089 0.156 20.041
prediction 3 0.313 20.173 0.475 20.225 0.520 20.189
prediction 3t 0.310 20.174 0.473 20.226 0.542 20.202
hedge 3 0.240 0.395 0.540
hedge 3t 0.238 0.395 0.539

25 0 estimation 3 0.162 20.026 0.152 20.001 0.181 0.037
estimation 3t 0.164 20.021 0.150 20.001 0.181 0.032
prediction 3 0.431 20.042 0.580 20.121 0.698 0.016
prediction 3t 0.428 20.038 0.578 20.118 0.712 20.009
hedge 3 0.433 0.579 0.642
hedge 3t 0.433 0.579 0.642

0 5 estimation 3 0.203 0.010 0.190 0.000 0.225 20.001
estimation 3t 0.206 0.012 0.192 0.002 0.226 20.003
prediction 3 0.443 20.003 0.615 20.133 0.751 20.112
prediction 3t 0.442 0.000 0.612 20.129 0.759 20.126
hedge 3 0.404 0.547 0.588
hedge 3t 0.404 0.548 0.588

5 10 estimation 3 0.243 0.016 0.291 20.037 0.309 20.037
estimation 3t 0.244 0.016 0.292 20.038 0.312 20.038
prediction 3 0.273 0.015 0.424 20.092 0.551 20.057
prediction 3t 0.272 0.015 0.424 20.094 0.550 20.061
hedge 3 0.279 0.368 0.389
hedge 3t 0.280 0.371 0.389
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truncation makes no difference. The in-sample valuation errors, the out-
of-sample prediction errors, and the hedging errors are virtually identical
to those of the unconstrained version of the model for both the overall sam-
ple and the various option categorizations. In other words, the parabolic
branches of the quadratic DVF models have not, in any way, obfuscated the
analysis.

B. Two-Week Estimation

The second robustness test addresses the issue of the deterministic vola-
tility function’s stationarity. If we had truly believed in the permanency of
the DVF model, we would have attempted to fit it to the entire five-year
data sample with the same values of the coefficients throughout. It should
be apparent by now, however, that no meaningful fit would have been ob-
tained. To give the model the benefit of the doubt, we adopt the procedure
advocated by the model’s developers and fit it to the cross section of options
available on one day only, and then determine whether the model could sur-
vive at least one week. By using comparatively little information, however,
we may have introduced sampling variation. This sampling variation, as
opposed to true parameter instability, may be responsible for the poor fit one
week later. In order to address this possibility, we now redo the entire analysis,
using the cross sections of two successive weeks for the in-sample estimation.
We then investigate the quality of the fit out of sample by moving ahead by
one more week, so that a total of three weeks are involved in the test.

The results for Model 3 are shown in Table VI. Not surprisingly, the in-
sample fit ~estimation mode! deteriorates slightly when going from one-
week to two-week estimation. Forcing the same coefficient structure on two
cross sections of option prices necessarily reduces in-sample performance.
For the “All Options” category, for example, the RMSVE increases from 22.6
cents to 30.8 cents. For calls, the increase is from 21.8 cents to 29.7 cents,
and, for puts, 23.0 cents to 31.4 cents.26

The prediction results are also reported in Table VI. Overall the improve-
ment in out-of-sample performance is small. For the whole sample, the RMSVE
is reduced from 55.5 cents to 54.4 cents. The subcategory results are mixed.
For short-term options, the prediction performance is reduced, but, for in-
termediate and long-term options, the performance is improved. All in all,
the results indicate that the additional variation in the time to expiration
brought about by using two cross sections of option prices captures slightly
better the relation between the local volatility rate and time.

The hedging performance results are noticeably improved as a result of
the two-week estimation. For the full sample, Table VI shows that the RMSHE
is reduced from 50.5 cents to 48.2 cents. Reductions in the RMSHE are also
observed for the call and put option categories as well as for most of the

26 The slight differences between the one-week results reported in Table VI and those re-
ported in Table V arise because one cross section of option prices is lost in the two-week esti-
mation procedure.
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Table VI

Average S&P 500 Index Option Dollar Valuation, Prediction, and Hedging Errors Using
the Deterministic Volatility Function (DVF) Model 3

RMSVE is the root mean squared valuation error averaged across all days in the sample period from June 1988 through December 1993. MOE
is the average of the mean valuation error outside the observed bid0ask quotes across all days in the sample ~a positive value indicates the
theoretical value exceeds the ask price on average; a negative value indicates the theoretical value is below the bid price!. MAE is the average
of the mean absolute valuation error outside the observed bid0ask quotes across all days in the sample. “Estimation” refers to in-sample valuation
errors, “prediction” refers to out-of-sample valuation errors, and “hedge” refers to hedging errors. Model “3-1week” specifies that the local
volatility rate is linear in X, X 2, T, T 2, and XT and is fitted to a single week’s cross-section, where X is the option exercise price, and T is the
time to expiration. Model “3-2 weeks” specifies that the local volatility rate is linear in X, X 2, T, T 2, and XT and is fitted to two weeks’ cross
sections. Moneyness is defined as X0F 2 1, where F is the forward index level.

Panel A: Aggregate Results

All Options Call Options Put Options

Test
DVF

Model RMSVE MOE MAE RMSVE MOE MAE RMSVE MOE MAE

Estimation 3-1 week 0.226 20.011 0.050 0.218 20.002 0.044 0.230 20.020 0.057
Estimation 3-2 weeks 0.308 20.018 0.098 0.297 0.009 0.087 0.314 20.047 0.112
Prediction 3-1 week 0.555 20.063 0.292 0.548 20.043 0.286 0.556 20.086 0.301
Prediction 3-2 weeks 0.544 20.047 0.283 0.537 20.008 0.274 0.548 20.089 0.298
Hedge 3-1 week 0.505 0.503 0.491
Hedge 3-2 weeks 0.482 0.476 0.473
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Panel B: Call Options Only

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper Test
DVF

Model RMSVE MOE RMSVE MOE RMSVE MOE

210 25 estimation 3-1 week 0.260 20.027 0.221 20.013 0.220 0.003
estimation 3-2 weeks 0.265 20.032 0.311 20.050 0.325 20.057

prediction 3-1 week 0.330 20.045 0.461 20.098 0.604 20.049
prediction 3-2 weeks 0.331 20.039 0.474 20.104 0.585 20.105
hedge 3-1 week 0.316 0.438 0.563
hedge 3-2 weeks 0.309 0.395 0.523

25 0 estimation 3-1 week 0.197 0.014 0.186 0.012 0.205 0.026
estimation 3-2 weeks 0.253 0.027 0.271 0.003 0.297 20.007
prediction 3-1 week 0.427 0.012 0.583 20.069 0.706 20.036
prediction 3-2 weeks 0.420 0.039 0.579 20.038 0.665 20.066
hedge 3-1 week 0.454 0.568 0.681
hedge 3-2 weeks 0.429 0.529 0.652

0 5 estimation 3-1 week 0.166 0.047 0.172 0.007 0.189 20.021
estimation 3-2 weeks 0.239 0.103 0.260 0.044 0.249 0.021
prediction 3-1 week 0.423 0.056 0.592 20.114 0.686 20.080
prediction 3-2 weeks 0.427 0.124 0.560 0.014 0.621 20.009
hedge 3-1 week 0.364 0.487 0.552
hedge 3-2 weeks 0.346 0.453 0.534

5 10 estimation 3-1 week 0.151 20.082 0.205 20.108 0.245 20.135
estimation 3-2 weeks 0.151 20.035 0.217 20.058 0.258 20.085
prediction 3-1 week 0.212 20.058 0.394 20.162 0.469 20.096
prediction 3-2 weeks 0.214 20.003 0.372 20.031 0.406 20.017
hedge 3-1 week 0.168 0.241 0.301
hedge 3-2 weeks 0.188 0.227 0.289
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Table VI—Continued

Panel C: Put Options Only

Days to Expiration

Moneyness ~%! Less than 40 40 to 70 More than 70

Lower Upper Test
DVF

Model RMSVE MOE RMSVE MOE RMSVE MOE

210 25 estimation 3-1 week 0.237 20.164 0.194 20.088 0.152 20.035
estimation 3-2 weeks 0.280 20.204 0.323 20.208 0.308 20.166
prediction 3-1 week 0.309 20.170 0.475 20.225 0.520 20.189
prediction 3-2 weeks 0.339 20.209 0.513 20.281 0.544 20.287
hedge 3-1 week 0.235 0.395 0.539
hedge 3-2 weeks 0.230 0.352 0.490

25 0 estimation 3-1 week 0.162 20.026 0.151 20.001 0.181 0.037
estimation 3-2 weeks 0.243 20.053 0.268 20.070 0.271 20.002
prediction 3-1 week 0.429 20.039 0.580 20.121 0.698 0.016
prediction 3-2 weeks 0.444 20.064 0.586 20.138 0.665 20.046
hedge 3-1 week 0.431 0.579 0.642
hedge 3-2 weeks 0.413 0.546 0.610

0 5 estimation 3-1 week 0.203 0.010 0.191 0.000 0.225 20.001
estimation 3-2 weeks 0.264 0.017 0.276 20.003 0.299 0.004
prediction 3-1 week 0.441 20.001 0.615 20.133 0.751 20.112
prediction 3-2 weeks 0.450 0.008 0.593 20.066 0.670 20.062
hedge 3-1 week 0.405 0.548 0.588
hedge 3-2 weeks 0.407 0.523 0.557

5 10 estimation 3-1 week 0.243 0.016 0.291 20.037 0.309 20.037
estimation 3-2 weeks 0.261 0.013 0.303 20.038 0.326 20.026
prediction 3-1 week 0.271 0.017 0.424 20.092 0.551 20.057
prediction 3-2 weeks 0.293 0.012 0.393 20.062 0.479 20.029
hedge 3-1 week 0.280 0.371 0.389
hedge 3-2 weeks 0.286 0.355 0.365
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option subcategories. Apparently, the two-week estimation has removed some
of the sampling variation and has identified a coefficient structure that is
more stable through time.

The overall performance of Model 3 estimated using two weeks of index
option prices, however, still does not match the overall performance of the ad
hoc Black–Scholes model fitted to a single cross section of prices ~recall
Table IV where the RMSHE is reported as 46.7 cents!. Indeed, if one esti-
mates the ad hoc Black–Scholes model using two cross sections of option
prices, its sampling variation is reduced by even more than it is for Model 3.
Though not shown in the table, its RMSHE falls to 40.8 cents. For calls and
puts separately, the RMSHEs of the ad hoc Black–Scholes model estimated
using the two-week estimation are 39.3 and 41.0 cents compared with 47.6
and 47.3 cents for Model 3. In other words, while increasing the amount of
information used in estimation has identified coefficients that are more sta-
ble through time, the hedging performance of the ad hoc Black–Scholes model
estimated using two cross sections of option prices shows even greater dom-
inance over the DVF model than it does when only one cross section is used.

C. Analysis of Subsamples

The final issue has to do with performance through time. Does the DVF
model perform better in some periods but not in others? To answer this
question, we summarize the estimation, prediction, and hedging errors by
calendar year. The results are reported in Table VII.

First, with respect to in-sample performance, the results are qualitatively
robust across the sample. Using the AIC, Model 2 most frequently does best
at describing the cross section of option prices in all subperiods. This is
followed by the performance of Model 1. Again, parsimony in the volatility
structure appears warranted. With respect to prediction, the ad hoc Black–
Scholes model does best in every year except 1988, when its RMSVE is only
slightly higher than Model 2’s. Indeed, the outperformance is quite extraor-
dinary in 1990, when its RMSVE is 54.2 cents versus 73.3 cents for Model 2.
Finally, with respect to hedging performance, the ad hoc Black–Scholes ~and
the constant volatility Black–Scholes! model again dominates. All in all, the
results of Table VII indicate that the poor performance of the DVF model is
not driven by a particular subperiod of the sample. The DVF model performs
poorly relative to an ad hoc procedure.

VIII. Summary and Conclusions

Claims that the Black and Scholes ~1973! valuation formula no longer
holds in financial markets are appearing with increasing frequency. When
the Black–Scholes formula is used to imply volatilities from reported option
prices, the volatility estimates vary systematically across exercise prices and
times to expiration. Derman and Kani ~1994a,b!, Dupire ~1994!, and Rubin-
stein ~1994! argue that this systematic behavior is driven by changes in the
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Table VII

Average S&P 500 Index Option Dollar Valuation, Prediction,
and Hedging Errors By Year Using the Deterministic

Volatility Function (DVF) Model
RMSVE ~RMSHE! is the root mean squared valuation ~hedging! error averaged across all days
in the sample period from June 1988 through December 1993. MAE is the average of the mean
absolute valuation error outside the observed bid0ask quotes across all days in the sample. AIC
is the proportion of days during the sample period that the model is judged best by the Akaike
Information Criterion. Model 0 is the Black0Scholes constant volatility model. Models 1, 2, and
3 specify that the local volatility rate is linear in ~a! X and X 2, ~b! X, X 2, T, and XT, and ~c! X,
X 2, T, T 2, and XT, respectively, where X is the option’s exercise price and T is its time to
expiration. Model S switches between Models 1, 2, and 3 depending upon whether the number
of option expirations in the cross-section is one, two or three, respectively. The Ad Hoc ~AH!
Model specifies that Black0Scholes implied volatility is linear in ~a! X and X 2, ~b! X, X 2, T, and
XT, and ~c! X, X 2, T, T 2, and XT, respectively, depending upon whether the number of option
expirations in the cross-section is one, two or three. Moneyness is defined as X0F 2 1, where F
is the forward index level.

Panel A: Estimation

Overall Calls Puts

Year
DVF

Model RMSVE MAE AIC RMSVE MAE RMSVE MAE

1988 0 0.435 0.208 0.000 0.433 0.215 0.435 0.200
1 0.229 0.063 0.258 0.205 0.050 0.248 0.075
2 0.178 0.032 0.677 0.178 0.032 0.177 0.033
3 0.176 0.031 0.065 0.176 0.030 0.174 0.031
S 0.178 0.032 0.000 0.178 0.032 0.177 0.032

1989 0 0.485 0.244 0.000 0.483 0.251 0.484 0.237
1 0.256 0.085 0.192 0.266 0.090 0.240 0.079
2 0.164 0.028 0.808 0.159 0.025 0.167 0.032
3 0.164 0.028 0.000 0.159 0.025 0.167 0.032
S 0.164 0.028 0.000 0.159 0.025 0.166 0.032

1990 0 0.838 0.475 0.000 0.861 0.522 0.814 0.433
1 0.339 0.117 0.250 0.348 0.126 0.323 0.108
2 0.223 0.048 0.712 0.230 0.053 0.212 0.043
3 0.216 0.043 0.000 0.220 0.046 0.206 0.040
S 0.216 0.043 0.038 0.220 0.046 0.207 0.040

1991 0 0.621 0.332 0.000 0.613 0.326 0.622 0.335
1 0.281 0.085 0.302 0.294 0.087 0.265 0.082
2 0.209 0.042 0.679 0.206 0.036 0.209 0.048
3 0.209 0.042 0.019 0.205 0.036 0.209 0.048
S 0.209 0.042 0.000 0.206 0.036 0.209 0.048

1992 0 0.708 0.390 0.000 0.712 0.401 0.698 0.381
1 0.284 0.082 0.135 0.288 0.081 0.278 0.086
2 0.226 0.048 0.731 0.227 0.041 0.225 0.057
3 0.222 0.045 0.135 0.222 0.038 0.222 0.055
S 0.223 0.046 0.000 0.223 0.038 0.222 0.055

1993 0 0.725 0.385 0.019 0.718 0.385 0.719 0.386
1 0.388 0.124 0.404 0.358 0.115 0.405 0.139
2 0.359 0.104 0.423 0.316 0.088 0.386 0.125
3 0.352 0.100 0.154 0.306 0.083 0.382 0.123
S 0.353 0.100 0.000 0.308 0.084 0.381 0.123
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volatility rate of asset returns. They hypothesize that volatility is a deter-
ministic function of asset price and time, and they provide appropriate bi-
nomial or trinomial option valuation procedures to account for this.

In this paper, we apply the deterministic volatility option valuation ap-
proach to S&P 500 index option prices during the period June 1988 through
December 1993. We reach the following conclusions. First, although there is

Table VII—Continued

Panel B: Prediction Panel C: Hedging

Overall Calls Puts Overall Calls Puts

Year
DVF

Model RMSVE MAE RMSVE MAE RMSVE MAE RMSVE RMSVE RMSVE

1988 0 0.546 0.290 0.554 0.308 0.524 0.273 0.308 0.299 0.305
1 0.412 0.201 0.400 0.200 0.420 0.201 0.349 0.358 0.331
2 0.394 0.187 0.388 0.190 0.397 0.185 0.365 0.366 0.356
3 0.398 0.193 0.392 0.196 0.402 0.190 0.365 0.368 0.356
S 0.394 0.188 0.388 0.191 0.397 0.185 0.365 0.367 0.355

AH 0.397 0.185 0.373 0.174 0.414 0.194 0.329 0.300 0.344
1989 0 0.612 0.346 0.614 0.350 0.605 0.345 0.386 0.376 0.394

1 0.494 0.258 0.497 0.258 0.483 0.261 0.411 0.389 0.429
2 0.475 0.256 0.468 0.245 0.477 0.270 0.441 0.417 0.460
3 0.475 0.256 0.469 0.246 0.476 0.269 0.441 0.417 0.459
S 0.474 0.255 0.468 0.245 0.476 0.269 0.440 0.417 0.459

AH 0.462 0.240 0.465 0.247 0.446 0.236 0.404 0.381 0.413
1990 0 0.996 0.589 1.016 0.624 0.968 0.560 0.529 0.544 0.490

1 0.671 0.364 0.677 0.375 0.661 0.353 0.608 0.634 0.570
2 0.733 0.424 0.746 0.443 0.718 0.407 0.649 0.675 0.613
3 0.731 0.424 0.744 0.445 0.714 0.405 0.651 0.678 0.613
S 0.731 0.423 0.744 0.445 0.713 0.405 0.649 0.678 0.611

AH 0.542 0.260 0.538 0.261 0.539 0.257 0.511 0.505 0.494
1991 0 0.819 0.484 0.811 0.474 0.807 0.487 0.501 0.508 0.473

1 0.649 0.370 0.658 0.367 0.636 0.371 0.559 0.551 0.541
2 0.640 0.372 0.638 0.362 0.639 0.384 0.571 0.555 0.564
3 0.642 0.374 0.641 0.364 0.640 0.385 0.572 0.557 0.564
S 0.640 0.372 0.638 0.362 0.638 0.383 0.571 0.555 0.564

AH 0.594 0.323 0.601 0.328 0.576 0.322 0.550 0.545 0.516
1992 0 0.820 0.474 0.829 0.479 0.784 0.459 0.435 0.410 0.432

1 0.473 0.216 0.482 0.212 0.455 0.220 0.424 0.439 0.402
2 0.465 0.216 0.464 0.204 0.461 0.230 0.423 0.425 0.408
3 0.451 0.207 0.449 0.195 0.449 0.220 0.422 0.427 0.404
S 0.451 0.206 0.449 0.195 0.448 0.220 0.423 0.429 0.403

AH 0.403 0.164 0.412 0.162 0.386 0.167 0.372 0.371 0.352
1993 0 0.809 0.446 0.815 0.447 0.781 0.445 0.506 0.468 0.502

1 0.581 0.266 0.553 0.253 0.596 0.288 0.523 0.518 0.495
2 0.577 0.263 0.532 0.234 0.608 0.302 0.523 0.503 0.513
3 0.569 0.259 0.530 0.234 0.595 0.292 0.521 0.516 0.496
S 0.573 0.261 0.532 0.236 0.600 0.295 0.522 0.512 0.501

AH 0.507 0.208 0.473 0.187 0.524 0.235 0.477 0.469 0.437
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unlimited f lexibility in specifying the volatility function and it is always
possible to describe exactly the reported structure of option prices, our re-
sults indicate that a parsimonious model works best in sample according to
the Akaike Information Criterion. Second, when the fitted volatility function
is used to value options one week later, the DVF model’s prediction errors
grow larger as the volatility function specification becomes less parsimoni-
ous. In particular, specifications that include a time parameter do worst of
all, indicating that the time variable is an important cause of overfitting at
the estimation stage. Third, hedge ratios determined by the Black–Scholes
model appear more reliable than those obtained from the DVF option valu-
ation model. In sum, “simpler is better.”

Overall, our results suggest at least two possible avenues for future in-
vestigation. First, the deterministic volatility framework could be general-
ized. The volatility surface, for example, may be related to past changes in
the index level. Such a generalized volatility surface is probably the last
candidate model that can be considered before resorting to fully stochastic
volatility processes—processes that are difficult to estimate and that do not
permit option valuation by the absence of arbitrage.27

Second, thought should be given to appropriate statistical test designs for
competing volatility structures. The “null hypothesis” being investigated is
that volatility is an exact function of asset price and time, so that options
can be valued exactly by the no-arbitrage condition. Any deviation from such
a strict theory, no matter how small, should cause a test statistic to reject
it.28 If a source of error had been introduced, some restriction on the sam-
pling distribution of the error could be deduced and could provide a basis for
a testing procedure.29
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