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1
C H A P T E R

...........................................

Basic
Principles

Ordinary and partial differential equations describe the way certain
quantities vary with time, such as the current in an electrical circuit,
the oscillations of a vibrating membrane, or the flow of heat through
an insulated conductor. These equations are generally coupled with
initial conditions that describe the state of the system at time t � 0.
A very powerful technique for solving these problems is that of

the Laplace transform, which literally transforms the original differ-
ential equation into an elementary algebraic expression. This latter
can then simply be transformed once again, into the solution of the
original problem. This technique is known as the “Laplace transform
method.” It will be treated extensively in Chapter 2. In the present
chapter we lay down the foundations of the theory and the basic
properties of the Laplace transform.

1.1 The Laplace Transform

Suppose that f is a real- or complex-valued function of the (time)
variable t > 0 and s is a real or complex parameter. We define the

1



1. Basic Principles2

Laplace transform of f as

F(s) � L(
f (t)

) �
∫ ∞

0
e−stf (t) dt

� lim
τ→∞

∫ τ

0
e−stf (t) dt (1.1)

whenever the limit exists (as a finite number). When it does, the
integral (1.1) is said to converge. If the limit does not exist, the integral
is said to diverge and there is no Laplace transform defined for f . The
notation L(f ) will also be used to denote the Laplace transform of
f , and the integral is the ordinary Riemann (improper) integral (see
Appendix).
The parameter s belongs to some domain on the real line or in

the complex plane. We will choose s appropriately so as to ensure
the convergence of the Laplace integral (1.1). In a mathematical and
technical sense, the domain of s is quite important. However, in a
practical sense, when differential equations are solved, the domain
of s is routinely ignored. When s is complex, we will always use the
notation s � x + iy.
The symbol L is the Laplace transformation, which acts on

functions f � f (t) and generates a new function, F(s) � L(
f (t)

)
.

Example 1.1. If f (t) ≡ 1 for t ≥ 0, then

L(
f (t)

) �
∫ ∞

0
e−st1 dt

� lim
τ→∞

(
e−st

−s

∣∣∣∣
τ

0

)

� lim
τ→∞

(
e−sτ

−s
+ 1

s

)
(1.2)

� 1
s

provided of course that s > 0 (if s is real). Thus we have

L(1) � 1
s

(s > 0). (1.3)
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If s ≤ 0, then the integral would diverge and there would be no re-
sulting Laplace transform. If we had taken s to be a complex variable,
the same calculation, withRe(s) > 0, would have given L(1) � 1/s.
In fact, let us just verify that in the above calculation the integral

can be treated in the same way even if s is a complex variable. We
require the well-known Euler formula (see Chapter 3)

eiθ � cos θ + i sin θ, θ real, (1.4)

and the fact that |eiθ| � 1. The claim is that (ignoring the minus sign
as well as the limits of integration to simplify the calculation)∫

est dt � est

s
, (1.5)

for s � x + iy any complex number �� 0. To see this observe that∫
est dt �

∫
e(x+iy)tdt

�
∫

ext cos yt dt + i

∫
ext sin yt dt

by Euler’s formula. Performing a double integration by parts on both
these integrals gives∫

estdt � ext

x2 + y2

[
(x cos yt + y sin yt)+ i(x sin yt − y cos yt)

]
.

Now the right-hand side of (1.5) can be expressed as

est

s
� e(x+iy)t

x + iy

� ext(cos yt + i sin yt)(x − iy)
x2 + y2

� ext

x2 + y2

[
(x cos yt + y sin yt)+ i(x sin yt − y cos yt)

]
,

which equals the left-hand side, and (1.5) follows.
Furthermore, we obtain the result of (1.3) for s complex if we

take Re(s) � x > 0, since then

lim
τ→∞ |e−sτ | � lim

τ→∞ e−xτ � 0,
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killing off the limit term in (1.3).

Let us use the preceding to calculate L(cosωt) and L(sinωt)
(ω real).

Example 1.2. We begin with

L(eiωt) �
∫ ∞

0
e−steiωtdt

� lim
τ→∞

e(iω−s)t

iω − s

∣∣∣∣
τ

0

� 1
s − iω

,

since limτ→∞ |eiωτe−sτ | � limτ→∞ e−xτ � 0, provided x � Re(s) >
0. Similarly, L(e−iωt) � 1/(s + iω). Therefore, using the linearity
property of L, which follows from the fact that integrals are linear
operators (discussed in Section 1.6),

L(eiωt)+ L(e−iωt)
2

� L
(
eiωt + e−iωt

2

)
� L(cosωt),

and consequently,

L(cosωt) � 1
2

(
1

s − iω
+ 1

s + iω

)
� s

s2 + ω2
. (1.6)

Similarly,

L(sinωt) � 1
2i

(
1

s − iω
− 1

s + iω

)
� ω

s2 + ω2

(Re(s) > 0
)
.

(1.7)

The Laplace transform of functions defined in a piecewise
fashion is readily handled as follows.

Example 1.3. Let (Figure 1.1)

f (t) �
{
t 0 ≤ t ≤ 1
1 t > 1.
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t

f�t�

O �

�

FIGURE 1.1

From the definition,

L(
f (t)

) �
∫ ∞

0
e−stf (t) dt

�
∫ 1

0
te−stdt + lim

τ→∞

∫ τ

1
e−stdt

� te−st

−s

∣∣∣∣
1

0
+ 1

s

∫ 1

0
e−stdt + lim

τ→∞
e−st

−s

∣∣∣∣
τ

1

� 1− e−s

s2

(Re(s) > 0
)
.

Exercises 1.1

1. From the definition of the Laplace transform, compute L(
f (t)

)
for

(a) f (t) � 4t (b) f (t) � e2t

(c) f (t) � 2 cos 3t (d) f (t) � 1− cosωt

(e) f (t) � te2t (f) f (t) � et sin t

(g) f (t) �
{
1 t ≥ a

0 t < a
(h) f (t) �



sinωt 0 < t <

π

ω

0
π

ω
≤ t
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(i) f (t) �
{
2 t ≤ 1
et t > 1.

2. Compute the Laplace transform of the function f (t) whose graph
is given in the figures below.

t

f�t�

O

�

�

�a�

t

f�t�

�

O � �

�b�

FIGURE E.1 FIGURE E.2

1.2 Convergence

Although the Laplace operator can be applied to a great many
functions, there are some for which the integral (1.1) does not
converge.

Example 1.4. For the function f (t) � e(t
2),

lim
τ→∞

∫ τ

0
e−stet

2
dt � lim

τ→∞

∫ τ

0
et
2−stdt � ∞

for any choice of the variable s, since the integrand grows without
bound as τ → ∞.
In order to go beyond the superficial aspects of the Laplace trans-

form, we need to distinguish two special modes of convergence of
the Laplace integral.
The integral (1.1) is said to be absolutely convergent if

lim
τ→∞

∫ τ

0
|e−stf (t)| dt

exists. If L(
f (t)

)
does converge absolutely, then∣∣∣∣∣
∫ τ′

τ

e−stf (t) dt

∣∣∣∣∣ ≤
∫ τ′

τ

|e−stf (t)|dt → 0
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as τ → ∞, for all τ′ > τ. This then implies thatL(
f (t)

)
also converges

in the ordinary sense of (1.1).∗

There is another form of convergence that is of the utmost im-
portance from a mathematical perspective. The integral (1.1) is said
to converge uniformly for s in some domain� in the complex plane if
for any ε > 0, there exists some number τ0 such that if τ ≥ τ0, then∣∣∣∣

∫ ∞

τ

e−stf (t) dt
∣∣∣∣ < ε

for all s in �. The point here is that τ0 can be chosen sufficiently
large in order to make the “tail” of the integral arbitrarily small,
independent of s.

Exercises 1.2

1. Suppose that f is a continuous function on [0,∞) and |f (t)| ≤
M < ∞ for 0 ≤ t < ∞.
(a) Show that the Laplace transform F(s) � L(

f (t)
)
con-

verges absolutely (and hence converges) for any s satisfying
Re(s) > 0.

(b) Show that L(
f (t)

)
converges uniformly if Re(s) ≥ x0 > 0.

(c) Show that F(s) � L(
f (t)

) → 0 as Re(s)→ ∞.
2. Let f (t) � et on [0,∞).

(a) Show that F(s) � L(et) converges for Re(s) > 1.
(b) Show that L(et) converges uniformly if Re(s) ≥ x0 > 1.

∗Convergence of an integral ∫ ∞

0

ϕ(t) dt

is equivalent to the Cauchy criterion:∫ τ′

τ

ϕ(t)dt → 0 as τ → ∞, τ ′ > τ.
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(c) Show that F(s) � L(et)→ 0 as Re(s)→ ∞.
3. Show that the Laplace transform of the function f (t) � 1/t, t > 0
does not exist for any value of s.

1.3 Continuity Requirements

Since we can compute the Laplace transform for some functions and
not others, such as e(t

2), we would like to know that there is a large
class of functions that do have a Laplace tranform. There is such a
class once we make a few restrictions on the functions we wish to
consider.

Definition 1.5. A function f has a jump discontinuity at a point
t0 if both the limits

lim
t→t

−
0

f (t) � f (t−0 ) and lim
t→t

+
0

f (t) � f (t+0 )

exist (as finite numbers) and f (t−0 ) �� f (t+0 ). Here, t → t−0 and t → t+0
mean that t → t0 from the left and right, respectively (Figure 1.2).

Example 1.6. The function (Figure 1.3)

f (t) � 1
t − 3

t

f�t�

O t�

f�t�
�
�

f�t�� �

FIGURE 1.2
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t

f�t�

�O

FIGURE 1.3

t

f�t�

O

�

FIGURE 1.4

has a discontinuity at t � 3, but it is not a jump discontinuity since
neither limt→3− f (t) nor limt→3+ f (t) exists.

Example 1.7. The function (Figure 1.4)

f (t) �
{
e−

t2

2 t > 0

0 t < 0

has a jump discontinuity at t � 0 and is continuous elsewhere.
Example 1.8. The function (Figure 1.5)

f (t) �
{
0 t < 0

cos 1
t
t > 0

is discontinuous at t � 0, but limt→0+ f (t) fails to exist, so f does not
have a jump discontinuity at t � 0.
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t

f�t�

O

�

�� FIGURE 1.5

t

f�t�

O �� �� �� �� �� b

FIGURE 1.6

The class of functions for which we consider the Laplace
transform defined will have the following property.

Definition 1.9. A function f is piecewise continuous on the in-
terval [0,∞) if (i) limt→0+ f (t) � f (0+) exists and (ii) f is continuous
on every finite interval (0, b) except possibly at a finite number
of points τ1, τ2, . . . , τn in (0, b) at which f has a jump discontinuity
(Figure 1.6).
The function in Example 1.6 is not piecewise continuous on

[0,∞). Nor is the function in Example 1.8. However, the function
in Example 1.7 is piecewise continuous on [0,∞).
An important consequence of piecewise continuity is that on

each subinterval the function f is also bounded. That is to say,

|f (t)| ≤ Mi, τi < t < τi+1, i � 1, 2, . . . , n − 1,
for finite constants Mi.
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In order to integrate piecewise continuous functions from 0 to b,
one simply integrates f over each of the subintervals and takes the
sum of these integrals, that is,

∫ b

0
f (t) dt �

∫ τ1

0
f (t) dt +

∫ τ2

τ1

f (t) dt + · · · +
∫ b

τn

f (t) dt.

This can be done since the function f is both continuous and
bounded on each subinterval and thus on each has a well-defined
(Riemann) integral.

Exercises 1.3

Discuss the continuity of each of the following functions and locate
any jump discontinuities.

1. f (t) � 1
1+ t

2. g(t) � t sin
1
t

(t �� 0)

3. h(t) �



t t ≤ 1
1

1+ t2
t > 1

4. i(t) �


sinh t
t

t �� 0
1 t � 0

5. j(t) � 1
t
sinh

1
t

(t �� 0)

6. k(t) �


1− e−t

t
t �� 0

0 t � 0

7. l(t) �
{
1 2na ≤ t < (2n + 1)a

−1 (2n + 1)a ≤ t < (2n + 2)a
a > 0, n � 0, 1, 2, . . .

8. m(t) �
[
t

a

]
+1, for t ≥ 0, a > 0, where [x] � greatest integer ≤ x.
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1.4 Exponential Order

The second consideration of our class of functions possessing a well-
defined Laplace transform has to do with the growth rate of the
functions. In the definition

L(
f (t)

) �
∫ ∞

0
e−stf (t) dt,

whenwe take s > 0
(
orRe(s) > 0

)
, the integral will converge as long

as f does not grow too rapidly. We have already seen by Example 1.4
that f (t) � et

2
does grow too rapidly for our purposes. A suitable rate

of growth can be made explicit.

Definition 1.10. A function f has exponential order α if there
exist constants M > 0 and α such that for some t0 ≥ 0,

|f (t)| ≤ M eαt, t ≥ t0.

Clearly the exponential function eat has exponential order α � a,
whereas tn has exponential order α for any α > 0 and any n ∈ N

(Exercises 1.4, Question 2), and bounded functions like sin t, cos t,
tan−1 t have exponential order 0, whereas e−t has order −1. How-
ever, et

2
does not have exponential order. Note that if β > α, then

exponential order α implies exponential order β, since eαt ≤ eβt,
t ≥ 0. We customarily state the order as the smallest value of α that
works, and if the value itself is not significant it may be suppressed
altogether.

Exercises 1.4

1. If f1 and f2 are piecewise continuous functions of orders α and
β, respectively, on [0,∞), what can be said about the continuity
and order of the functions

(i) c1f1 + c2f2, c1, c2 constants,
(ii) f · g?

2. Show that f (t) � tn has exponential order α for any α > 0, n ∈ N.
3. Prove that the function g(t) � et

2
does not have exponential order.
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1.5 The Class L

We now show that a large class of functions possesses a Laplace
transform.

Theorem 1.11. If f is piecewise continuous on [0,∞) and of exponen-
tial order α, then the Laplace transform L(f ) exists for Re(s) > α and
converges absolutely.

Proof. First,

|f (t)| ≤ M1 e
αt, t ≥ t0,

for some real α. Also, f is piecewise continuous on [0, t0] and hence
bounded there (the bound being just the largest bound over all the
subintervals), say

|f (t)| ≤ M2, 0 < t < t0.

Since eαt has a positive minimum on [0, t0], a constant M can be
chosen sufficiently large so that

|f (t)| ≤ M eαt, t > 0.

Therefore, ∫ τ

0
|e−stf (t)|dt ≤ M

∫ τ

0
e−(x−α)tdt

� M e−(x−α)t

−(x − α)

∣∣∣∣
τ

0

� M

x − α
− M e−(x−α)τ

x − α
.

Letting τ → ∞ and noting that Re(s) � x > α yield∫ ∞

0
|e−stf (t)|dt ≤ M

x − α
. (1.8)

Thus the Laplace integral converges absolutely in this instance (and
hence converges) for Re(s) > α. �
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Example 1.12. Let f (t) � eat, a real. This function is continuous
on [0,∞) and of exponential order a. Then

L(eat) �
∫ ∞

0
e−steatdt

�
∫ ∞

0
e−(s−a)tdt

� e−(s−a)t

−(s − a)

∣∣∣∣
∞

0
� 1

s − a

(Re(s) > a
)
.

The same calculation holds for a complex and Re(s) > Re(a).

Example 1.13. Applying integration by parts to the function f (t) �
t (t ≥ 0), which is continuous and of exponential order, gives

L(t) �
∫ ∞

0
t e−stdt

� −t e−st

s

∣∣∣∣
∞

0
+ 1

s

∫ ∞

0
e−stdt

� 1
s

L(1) (
provided Re(s) > 0

)
� 1

s2
.

Performing integration by parts twice as above, we find that

L(t2) �
∫ ∞

0
e−stt2dt

� 2
s3

(Re(s) > 0
)
.

By induction, one can show that in general,

L(tn) � n!
sn+1

(Re(s) > 0
)

(1.9)

for n � 1, 2, 3, . . . . Indeed, this formula holds even for n � 0, since
0! � 1, and will be shown to hold even for non-integer values of n
in Section 2.1.
Let us define the class L as the set of those real- or complex-

valued functions defined on the open interval (0,∞) for which the
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Laplace transform (defined in terms of the Riemann integral) exists
for some value of s. It is known that whenever F(s) � L(

f (t)
)
exists

for some value s0, then F(s) exists for all s withRe(s) > Re(s0), that
is, the Laplace transform exists for all s in some right half-plane (cf.
Doetsch [2], Theorem 3.4). By Theorem 1.11, piecewise continuous
functions on [0,∞) having exponential order belong to L. However,
there certainly are functions in L that do not satisfy one or both of
these conditions.

Example 1.14. Consider

f (t) � 2t et2 cos(et2).
Then f (t) is continuous on [0,∞) but not of exponential order.
However, the Laplace transform of f (t),

L(
f (t)

) �
∫ ∞

0
e−st2t et

2
cos(et

2
)dt,

exists, since integration by parts yields

L(
f (t)

) � e−st sin(et
2
)
∣∣∣∞
0

+ s

∫ ∞

0
e−st sin(et

2
) dt

� − sin(1)+ sL(
sin(et

2
)
) (Re(s) > 0

)
.

and the latter Laplace transform exists by Theorem 1.11. Thus we
have a continuous function that is not of exponential order yet
nevertheless possesses a Laplace transform. See also Remark 2.8.
Another example is the function

f (t) � 1√
t
. (1.10)

We will compute its actual Laplace transform in Section 2.1 in the
context of the gamma function. While (1.10) has exponential order
α � 0 (|f (t)| ≤ 1, t ≥ 1), it is not piecewise continuous on [0,∞)
since f (t)→ ∞ as t → 0+, that is, t � 0 is not a jump discontinuity.

Exercises 1.5

1. Consider the function g(t) � t et
2
sin(et

2
).
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(a) Is g continuous on [0,∞)? Does g have exponential order?
(b) Show that the Laplace transform F(s) exists for Re(s) > 0.
(c) Show that g is the derivative of some function having

exponential order.

2. Without actually determining it, show that the following func-
tions possess a Laplace transform.

(a)
sin t
t

(b)
1− cos t

t

(c) t2 sinh t

3. Without determining it, show that the function f , whose graph is
given in Figure E.3, possesses a Laplace transform. (See Question
3(a), Exercises 1.7.)

t

f�t�

�

�

�

�

a �a �a �aO

FIGURE E.3

1.6 Basic Properties of the Laplace
Transform

Linearity. One of the most basic and useful properties of the
Laplace operatorL is that of linearity, namely, if f1 ∈ L forRe(s) > α,
f2 ∈ L for Re(s) > β, then f1 + f2 ∈ L for Re(s) > max{α, β}, and

L(c1f1 + c2f2) � c1L(f1)+ c2L(f2) (1.11)
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for arbitrary constants c1, c2.
This follows from the fact that integration is a linear process, to

wit, ∫ ∞

0
e−st

(
c1f1(t)+ c2f2(t)

)
dt

� c1

∫ ∞

0
e−stf1(t) dt + c2

∫ ∞

0
e−stf2(t) dt (f1, f2 ∈ L).

Example 1.15. The hyperbolic cosine function

coshωt � eωt + e−ωt

2

describes the curve of a hanging cable between two supports. By
linearity

L(coshωt) � 1
2
[L(eωt)+ L(e−ωt)]

� 1
2

(
1

s − ω
+ 1

s + ω

)

� s

s2 − ω2
.

Similarly,

L(sinhωt) � ω

s2 − ω2
.

Example 1.16. If f (t) � a0 + a1t + · · · + ant
n is a polynomial of

degree n, then

L(
f (t)

) �
n∑

k�0
akL(tk)

�
n∑

k�0

akk!
sk+1

by (1.9) and (1.11).

Infinite Series. For an infinite series,
∑∞

n�0 ant
n, in general it is not

possible to obtain the Laplace transform of the series by taking the
transform term by term.
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Example 1.17.

f (t) � e−t2 �
∞∑
n�0

(−1)nt2n
n!

, −∞ < t < ∞.

Taking the Laplace transform term by term gives
∞∑
n�0

(−1)n
n!

L(t2n) �
∞∑
n�0

(−1)n
n!

(2n)!
s2n+1

� 1
s

∞∑
n�0

(−1)n(2n) · · · (n + 2)(n + 1)
s2n

.

Applying the ratio test,

lim
n→∞

∣∣∣∣un+1
un

∣∣∣∣ � lim
n→∞

2(2n + 1)
|s|2 � ∞,

and so the series diverges for all values of s.
However, L(e−t2) does exist since e−t2 is continuous and bounded

on [0,∞).
So when can we guarantee obtaining the Laplace transform of an

infinite series by term-by-term computation?

Theorem 1.18. If

f (t) �
∞∑
n�0

ant
n

converges for t ≥ 0, with

|an| ≤ Kαn

n!
,

for all n sufficiently large and α > 0, K > 0, then

L(
f (t)

) �
∞∑
n�0

anL(tn) �
∞∑
n�0

ann!
sn+1

(Re(s) > α
)
.

Proof. Since f (t) is represented by a convergent power series, it is
continuous on [0,∞). We desire to show that the difference∣∣∣∣∣L(

f (t)
) −

N∑
n�0

anL(tn)
∣∣∣∣∣ �

∣∣∣∣∣L
(
f (t)−

N∑
n�0

ant
n

)∣∣∣∣∣
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≤ Lx

(∣∣∣∣∣f (t)−
N∑
n�0

ant
n

∣∣∣∣∣
)

converges to zero as N → ∞, where Lx

(
h(t)

) � ∫ ∞
0 e−xth(t) dt, x �

Re(s).
To this end,∣∣∣∣∣f (t)−

N∑
n�0

ant
n

∣∣∣∣∣ �
∣∣∣∣∣

∞∑
n�N+1

ant
n

∣∣∣∣∣
≤ K

∞∑
n�N+1

(αt)n

n!

� K

(
eαt −

N∑
n�0

(αt)n

n!

)

since ex � ∑∞
n�0 x

n/n!. As h ≤ g implies Lx(h) ≤ Lx(g) when the
transforms exist,

Lx

(∣∣∣∣∣f (t)−
N∑
n�0

ant
n

∣∣∣∣∣
)

≤ K Lx

(
eαt −

N∑
n�0

(αt)n

n!

)

� K

(
1

x − α
−

N∑
n�0

αn

xn+1

)

� K

(
1

x − α
− 1

x

N∑
n�0

(α
x

)n)

→ 0
(Re(s) � x > α

)
as N → ∞. We have used the fact that the geometric series has the
sum

∞∑
n�0

zn � 1
1− z

, |z| < 1.

Therefore,

L(
f (t)

) � lim
N→∞

N∑
n�0

anL(tn)
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�
∞∑
n�0

ann!
sn+1

(Re(s) > α
)
. �

Note that the coefficients of the series in Example 1.17 do not
satisfy the hypothesis of the theorem.

Example 1.19.

f (t) � sin t
t

�
∞∑
n�0

(−1)nt2n
(2n + 1)! .

Then,

|a2n| � 1
(2n + 1)! <

1
(2n)!

, n � 0, 1, 2, . . . ,

and so we can apply the theorem:

L
(
sin t
t

)
�

∞∑
n�0

(−1)nL(t2n)
(2n + 1)!

�
∞∑
n�0

(−1)n
(2n + 1)s2n+1

� tan−1
(
1
s

)
, |s| > 1.

Here we are using the fact that

tan−1 x �
∫ x

0

dt

1+ t2
�

∫ x

0

∞∑
n�0
(−1)nt2n

�
∞∑
n�0

(−1)nx2n+1

2n + 1 , |x| < 1,

with x � 1/s, as we can integrate the series term by term. See also
Example 1.38.

Uniform Convergence. We have already seen by Theorem 1.11
that for functions f that are piecewise continuous on [0,∞) and of
exponential order, the Laplace integral converges absolutely, that is,∫ ∞
0 |e−stf (t)| dt converges. Moreover, for such functions the Laplace
integral converges uniformly.
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To see this, suppose that

|f (t)| ≤ M eαt, t ≥ t0.

Then ∣∣∣∣
∫ ∞

t0

e−stf (t) dt
∣∣∣∣ ≤

∫ ∞

t0

e−xt|f (t)|dt

≤ M

∫ ∞

t0

e−(x−α)tdt

� M e−(x−α)t

−(x − α)

∣∣∣∣
∞

t0

� M e−(x−α)t0

x − α
,

provided x � Re(s) > α. Taking x ≥ x0 > α gives an upper bound
for the last expression:

M e−(x−α)t0

x − α
≤ M

x0 − α
e−(x0−α)t0 . (1.12)

By choosing t0 sufficiently large, we can make the term on the right-
hand side of (1.12) arbitrarily small; that is, given any ε > 0, there
exists a value T > 0 such that∣∣∣∣

∫ ∞

t0

e−stf (t) dt
∣∣∣∣ < ε, whenever t0 ≥ T (1.13)

for all values of s with Re(s) ≥ x0 > α. This is precisely the con-
dition required for the uniform convergence of the Laplace integral
in the region Re(s) ≥ x0 > α (see Section 1.2). The importance
of the uniform convergence of the Laplace transform cannot be
overemphasized, as it is instrumental in the proofs of many results.

F(s) → � as s → ∞. A general property of the Laplace transform
that becomes apparent from an inspection of the table at the back
of this book (pp. 210–218) is the following.

Theorem 1.20. If f is piecewise continuous on [0,∞) and has
exponential order α, then

F(s) � L(
f (t)

) → 0
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as Re(s)→ ∞.

In fact, by (1.8)∣∣∣∣
∫ ∞

0
e−stf (t) dt

∣∣∣∣ ≤ M

x − α
,

(Re(s) � x > α
)
,

and letting x → ∞ gives the result.

Remark 1.21. As it turns out, F(s) → 0 as Re(s) → ∞ when-
ever the Laplace transform exists, that is, for all f ∈ L (cf. Doetsch
[2], Theorem 23.2). As a consequence, any function F(s) without
this behavior, say (s − 1)/(s + 1), es/s, or s2, cannot be the Laplace
transform of any function f .

Exercises 1.6

1. Find L(2t + 3e2t + 4 sin 3t).
2. Show that L(sinhωt) � ω

s2 − ω2
.

3. Compute

(a) L(cosh2 ωt) (b) L(sinh2 ωt).
4. Find L(3 cosh 2t − 2 sinh 2t).
5. ComputeL(cosωt) andL(sinωt) from the Taylor series represen-
tations

cosωt �
∞∑
n�0

(−1)n(ωt)2n
(2n)!

, sinωt �
∞∑
n�0

(−1)n(ωt)2n+1

(2n + 1)! ,

respectively.
6. Determine L(sin2 ωt) and L(cos2 ωt) using the formulas

sin2 ωt � 1
2

− 1
2
cos 2ωt, cos2 ωt � 1− sin2 ωt,

respectively.

7. Determine L
(
1− e−t

t

)
.
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Hint:

log(1+ x) �
∞∑
n�0

(−1)nxn+1

n + 1 , |x| < 1.

8. Determine L
(
1− cosωt

t

)
.

9. Can F(s) � s/log s be the Laplace transform of some function f ?

1.7 Inverse of the Laplace Transform

In order to apply the Laplace transform to physical problems, it is
necessary to invoke the inverse transform. If L(

f (t)
) � F(s), then

the inverse Laplace transform is denoted by

L−1(F(s)) � f (t), t ≥ 0,
which maps the Laplace transform of a function back to the original
function. For example,

L−1
(

ω

s2 + ω2

)
� sinωt, t ≥ 0.

The question naturally arises: Could there be some other func-
tion f (t) �≡ sinωt with L−1(ω/(s2 + ω2)

) � f (t)? More generally, we
need to know when the inverse transform is unique.

Example 1.22. Let

g(t) �
{
sinωt t > 0

1 t � 0.
Then

L(
g(t)

) � ω

s2 + ω2
,

since altering a function at a single point (or even at a finite number
of points) does not alter the value of the Laplace (Riemann) integral.

This example illustrates that L−1(F(s)) can be more than one
function, in fact infinitelymany, at least when considering functions
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with discontinuities. Fortunately, this is the only case (cf. Doetsch
[2], p. 24).

Theorem 1.23. Distinct continuous functions on [0,∞) have distinct
Laplace transforms.

This result is known as Lerch’s theorem. Itmeans that if we restrict
our attention to functions that are continuous on [0,∞), then the
inverse transform

L−1(F(s)) � f (t)

is uniquely defined and we can speak about the inverse, L−1(F(s)).
This is exactly what we shall do in the sequel, and hence we write

L−1
(

ω

s2 + ω2

)
� sinωt, t ≥ 0.

Since many of the functions we will be dealing with will be so-
lutions to differential equations and hence continuous, the above
assumptions are completely justified.
Note also that L−1 is linear, that is,

L−1(a F(s)+ bG(s)
) � a f (t)+ b g(t)

if L(
f (t)

) � F(s), L(
g(t)

) � G(s). This follows from the linearity of
L and holds in the domain common to F and G.
Example 1.24.

L−1
(

1
2(s − 1) + 1

2(s + 1)
)

� 1
2
et + 1

2
e−t

� cosh t, t ≥ 0.
One of the practical features of the Laplace transform is that it

can be applied to discontinuous functions f . In these instances, it
must be borne in mind that when the inverse transform is invoked,
there are other functions with the same L−1(F(s)).
Example 1.25. An important function occurring in electrical
systems is the (delayed) unit step function (Figure 1.7)

ua(t) �
{
1 t ≥ a

0 t < a,
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t

ua�t�

O

�

a FIGURE 1.7

for a ≥ 0. This function delays its output until t � a and then as-
sumes a constant value of one unit. In the literature, the unit step
function is also commonly defined as

ua(t) �
{
1 t > a

0 t < a,

for a ≥ 0, and is known as the Heaviside (step) function. Both defini-
tions of ua(t) have the same Laplace transform and so from that point
of view are indistinguishable. When a � 0, wewill write ua(t) � u(t).
Another common notation for the unit step function ua(t) is u(t−a).

Computing the Laplace transform,

L(
ua(t)

) �
∫ ∞

0
e−stua(t) dt

�
∫ ∞

a

e−stdt

� e−st

−s

∣∣∣∣
∞

a

� e−as

s

(Re(s) > 0
)
.

It is appropriate to write
(
with either interpretation of ua(t)

)
L−1

(
e−as

s

)
� ua(t),
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although we could equally have written L−1 (e−as/s
) � va(t) for

va(t) �
{
1 t > a

0 t ≤ a,

which is another variant of the unit step function.
Another interesting function along these lines is the following.

Example 1.26. For 0 ≤ a < b, let

uab(t) � 1
b − a

(
ua(t)− ub(t)

) �



0 t < a

1
b−a

a ≤ t < b

0 t ≥ b,

as shown in Figure 1.8.
Then

L(
uab(t)

) � e−as − e−bs

s(b − a)
.

Exercises 1.7

1. Prove that L−1 is a linear operator.
2. A function N(t) is called a null function if∫ t

0
N(τ) dτ � 0,

for all t > 0.

(a) Give an example of a null function that is not identically
zero.

t

uab�t�

O a b

�

b�a

FIGURE 1.8
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(b) Use integration by parts to show that

L(
N(t)

) � 0,
for any null function N(t).

(c) Conclude that

L(
f (t)+ N(t)

) � L(
f (t)

)
,

for any f ∈ L and null function N(t). (The converse is also
true, namely, if L(f1) ≡ L(f2) in a right half-plane, then f1
and f2 differ by at most a null function. See Doetsch [2],
pp. 20–24).

(d) How can part (c) be reconciled with Theorem 1.23?

3. Consider the function f whose graph is given in Question 3 of
Exercises 1.5 (Figure E.3).

(a) Compute the Laplace transformof f directly from the explicit
values f (t) and deduce that

L(
f (t)

) � 1
s(1− e−as)

(Re(s) > 0, a > 0
)
.

(b) Write f (t) as an infinite series of unit step functions.
(c) By taking the Laplace transform term by term of the infinite

series in (b), show that the same result as in (a) is attained.

1.8 Translation Theorems

We present two very useful results for determining Laplace trans-
forms and their inverses. The first pertains to a translation in the
s-domain and the second to a translation in the t-domain.

Theorem 1.27 (First Translation Theorem). If F(s) � L(
f (t)

)
for

Re(s) > 0, then

F(s − a) � L(
eatf (t)

) (
a real, Re(s) > a

)
.

Proof. For Re(s) > a,

F(s − a) �
∫ ∞

0
e−(s−a)tf (t) dt
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�
∫ ∞

0
e−steatf (t) dt

� L(
eatf (t)

)
. �

Example 1.28. Since

L(t) � 1
s2

(Re(s) > 0
)
,

then

L(t eat) � 1
(s − a)2

(Re(s) > a
)
,

and in general,

L(tneat) � n!
(s − a)n+1 , n � 0, 1, 2, . . . (Re(s) > a

)
.

This gives a useful inverse:

L−1
(

1
(s − a)n+1

)
� 1

n!
tneat, t ≥ 0.

Example 1.29. Since

L(sinωt) � ω

s2 + ω2
,

then

L(e2t sin 3t) � 3
(s − 2)2 + 9 .

In general,

L(eat cosωt) � s − a

(s − a)2 + ω2

(Re(s) > a
)

L(eat sinωt) � ω

(s − a)2 + ω2

(Re(s) > a
)

L(eat coshωt) � s − a

(s − a)2 − ω2

(Re(s) > a
)

L(eat sinhωt) � ω

(s − a)2 − ω2

(Re(s) > a
)
.
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Example 1.30.

L−1
(

s

s2 + 4s + 1
)

� L−1
(

s

(s + 2)2 − 3
)

� L−1
(

s + 2
(s + 2)2 − 3

)
− L−1

(
2

(s + 2)2 − 3
)

� e−2t cosh
√
3t − 2√

3
e−2t sinh

√
3 t.

In the first step we have used the procedure of completing the square.

Theorem 1.31 (Second Translation Theorem). If F(s) � L(
f (t)

)
,

then

L(
ua(t)f (t − a)

) � e−asF(s) (a ≥ 0).
This follows from the basic fact that∫ ∞

0
e−st[ua(t)f (t − a)] dt �

∫ ∞

a

e−stf (t − a) dt,

and setting τ � t − a, the right-hand integral becomes∫ ∞

0
e−s(τ+a)f (τ) dτ � e−as

∫ ∞

0
e−sτf (τ) dτ

� e−asF(s).

Example 1.32. Let us determine L(
g(t)

)
for (Figure 1.9)

g(t) �
{

0 0 ≤ t < 1

(t − 1)2 t ≥ 1.

t

g�t�

O � FIGURE 1.9
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Note that g(t) is just the function f (t) � t2 delayed by (a �) 1 unit
of time. Whence

L(
g(t)

) � L(
u1(t)(t − 1)2

)
� e−sL(t2)
� 2e

−s

s3

(Re(s) > 0
)
.

The second translation theoremcan also be considered in inverse
form:

L−1(e−asF(s)
) � ua(t)f (t − a), (1.14)

for F(s) � L(
f (t)

)
, a ≥ 0.

Example 1.33. Find

L−1
(

e−2s

s2 + 1
)
.

We have

e−2s

s2 + 1 � e−2sL(sin t),
so by (1.14)

L−1
(

e−2s

s2 + 1
)

� u2(t) sin(t − 2), (t ≥ 0).

This is just the function sin t, which gets “turned on” at time t � 2.

Exercises 1.8

1. Determine

(a) L(e2t sin 3t) (b) L(t2e−ωt)

(c) L−1
(

4
(s − 4)3

)
(d) L(e7t sinh√

2 t)

(e) L−1
(

1
s2 + 2s + 5

)
(f) L−1

(
s

s2 + 6s + 1
)
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(g) L(
e−at cos(ωt + θ)

)
(h) L−1

(
s

(s + 1)2
)
.

2. Determine L(
f (t)

)
for

(a) f (t) �
{
0 0 ≤ t < 2
eat t ≥ 2 (b) f (t) �

{
0 0 ≤ t < π

2

sin t t ≥ π
2

(c) f (t) � uπ(t) cos(t − π).

3. Find

(a) L−1
(
e−2s

s3

)

(b) L−1
(
E

s
− s

s2 + 1 e
−as

)
(E constant)

(c) L−1
(

e−πs

s2 − 2
)
.

1.9 Differentiation and Integration of
the Laplace Transform

As will be shown in Chapter 3, when s is a complex variable, the
Laplace transform F(s) (for suitable functions) is an analytic func-
tion of the parameter s. When s is a real variable, we have a formula
for the derivative of F(s), which holds in the complex case as well
(Theorem 3.3).

Theorem 1.34. Let f be piecewise continuous on [0,∞) of exponential
order α and L(

f (t)
) � F(s). Then

dn

dsn
F(s) � L(

(−1)ntnf (t)), n � 1, 2, 3, . . . (s > α). (1.15)

Proof. By virtue of the hypotheses, for s ≥ x0 > α, it is justified
(cf. Theorem A.12) to interchange the derivative and integral sign
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in the following calculation.

d

ds
F(s) � d

ds

∫ ∞

0
e−stf (t) dt

�
∫ ∞

0

∂

∂s
e−stf (t) dt

�
∫ ∞

0
−te−stf (t) dt

� L( − tf (t)
)
.

Since for any s > α, one can find some x0 satisfying s ≥ x0 > α,
the preceding result holds for any s > α. Repeated differentiation
(or rather induction) gives the general case, by virtue of L(

tkf (t)
)

being uniformly convergent for s ≥ x0 > α. �

Example 1.35.

L(t cosωt) � − d

ds
L(cosωt)

� − d

ds

s

s2 + ω2

� s2 − ω2

(s2 + ω2)2
.

Similarly,

L(t sinωt) � 2ωs
(s2 + ω2)2

.

For n � 1 we can express (1.15) as

f (t) � −1
t

L−1
(
d

ds
F(s)

)
(t > 0) (1.16)

for f (t) � L−1(F(s)). This formulation is also useful.
Example 1.36. Find

f (t) � L−1
(
log

s + a

s + b

)
.



1.9. Differentiation and Integration of the Laplace Transform 33

Since

d

ds
log

(
s + a

s + b

)
� 1

s + a
− 1

s + b
,

f (t) � −1
t

L−1
(
1

s + a
− 1

s + b

)

� 1
t
(e−bt − e−at).

Not only can the Laplace transform be differentiated, but it can
be integrated as well. Again the result is another Laplace transform.

Theorem 1.37. If f is piecewise continuous on [0,∞) and of exponen-
tial order α, with F(s) � L(

f (t)
)

and such that limt→0+ f (t)/t exists,
then ∫ ∞

s

F(x) dx � L
(
f (t)
t

)
(s > α).

Proof. Integrating both sides of the equation

F(x) �
∫ ∞

0
e−xtf (t) dt (x real),

we obtain ∫ ∞

s

F(x) dx � lim
w→∞

∫ w

s

(∫ ∞

0
e−xtf (t) dt

)
dx.

As
∫ ∞
0 e−xtf (t) dt converges uniformly for α < s ≤ x ≤ w (1.12), we

can reverse the order of integration (cf. Theorem A.11), giving∫ ∞

s

F(x) dx � lim
w→∞

∫ ∞

0

(∫ w

s

e−xtf (t) dx
)
dt

� lim
w→∞

∫ ∞

0

[
e−xt

−t
f (t)

]w
s

dt

�
∫ ∞

0
e−st f (t)

t
dt − lim

w→∞

∫ ∞

0
e−wt f (t)

t
dt

� L
(
f (t)
t

)
,
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as limw→∞ G(w) � 0 by Theorem 1.20 for G(w) � L (
f (t)/t

)
. The

existence of L (
f (t)/t

)
is ensured by the hypotheses. �

Example 1.38.

(i) L
(
sin t
t

)
�

∫ ∞

s

dx

x2 + 1 � π

2
− tan−1 s

� tan−1
(
1
s

)
(s > 0).

(ii) L
(
sinhωt

t

)
�

∫ ∞

s

ω dx

x2 − ω2

� 1
2

∫ ∞

s

(
1

x − ω
− 1

x + ω

)
dx

� 1
2
ln

s + ω

s − ω
(s > |ω|).

Exercises 1.9

1. Determine

(a) L(t coshωt) (b) L(t sinhωt)

(c) L(t2 cosωt) (d) L(t2 sinωt).
2. Using Theorem 1.37, show that

(a) L
(
1− e−t

t

)
� log

(
1+ 1

s

)
(s > 0)

(b) L
(
1− cosωt

t

)
� 1
2 log

(
1+ ω2

s2

)
(s > 0).

[Compare (a) and (b) with Exercises 1.6, Question 7 and 8,
respectively.]

(c) L
(
1− coshωt

t

)
� 1
2
log

(
1− ω2

s2

)
(s > |ω|).

3. Using (1.16), find

(a) L−1
(
log

(
s2 + a2

s2 + b2

))
(b) L−1

(
tan−1 1

s

)
(s > 0).
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4. If

L−1
(
e−a

√
s

√
s

)
� e−a2/4t

√
πt

,

find L−1(e−a
√
s).

1.10 Partial Fractions

In many applications of the Laplace transform it becomes neces-
sary to find the inverse of a particular transform, F(s). Typically it
is a function that is not immediately recognizable as the Laplace
transform of some elementary function, such as

F(s) � 1
(s − 2)(s − 3) ,

for s confined to some region �
(
e.g., Re(s) > α

)
. Just as in calcu-

lus (for s real), where the goal is to integrate such a function, the
procedure required here is to decompose the function into partial
fractions.
In the preceding example, we can decompose F(s) into the sum

of two fractional expressions:

1
(s − 2)(s − 3) � A

s − 2 + B

s − 3 ,

that is,

1 � A(s − 3)+ B(s − 2). (1.17)

Since (1.17) equates two polynomials [1 and A(s − 3) + B(s − 2)]
that are equal for all s in �, except possibly for s � 2 and s � 3, the
two polynomials are identically equal for all values of s. This follows
from the fact that two polynomials of degree n that are equal at more
than n points are identically equal (Corollary A.8).
Thus, if s � 2, A � −1, and if s � 3, B � 1, so that

F(s) � 1
(s − 2)(s − 3) � −1

s − 2 + 1
s − 3 .
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Finally,

f (t) � L−1(F(s)) � L−1
(

− 1
s − 2

)
+ L−1

(
1

s − 3
)

� −e2t + e3t .

Partial Fraction Decompositions. We will be concerned with the
quotient of two polynomials, namely a rational function

F(s) � P(s)
Q (s)

,

where the degree of Q (s) is greater than the degree of P(s), and P(s)
and Q (s) have no common factors. Then F(s) can be expressed as a
finite sum of partial fractions.

(i) For each linear factor of the form as + b of Q (s), there
corresponds a partial fraction of the form

A

as + b
, A constant.

(ii) For each repeated linear factor of the form (as + b)n, there
corresponds a partial fraction of the form

A1

as + b
+ A2

(as + b)2
+· · ·+ An

(as + b)n
, A1, A2, . . . , An constants.

(iii) For every quadratic factor of the form as2 + bs + c, there
corresponds a partial fraction of the form

As + B

as2 + bs + c
, A, B constants.

(iv) For every repeated quadratic factor of the form (as2+bs+c)n,
there corresponds a partial fraction of the form

A1s + B1

as2 + bs + c
+ A2s + B2

(as2 + bs + c)2
+ · · · + Ans + Bn

(as2 + bs + c)n
,

A1, . . . , An, B1, . . . , Bn constants.

The object is to determine the constants once the polynomial
P(s)/Q (s) has been represented by a partial fraction decomposition.
This can be achieved by several different methods.
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Example 1.39.

1
(s − 2)(s − 3) � A

s − 2 + B

s − 3
or

1 � A(s − 3)+ B(s − 2),
as we have already seen. Since this is a polynomial identity valid for
all s, we may equate the coefficients of like powers of s on each side
of the equals sign (see Corollary A.8). Thus, for s, 0 � A + B; and
for s0, 1 � −3A − 2B. Solving these two equations simultaneously,
A � −1, B � 1 as before.
Example 1.40. Find

L−1
(

s + 1
s2(s − 1)

)
.

Write
s + 1

s2(s − 1) � A

s
+ B

s2
+ C

s − 1 ,

or

s + 1 � As(s − 1)+ B(s − 1)+ Cs2,

which is an identity for all values of s. Setting s � 0 gives B � −1;
setting s � 1 gives C � 2. Equating the coefficients of s2 gives 0 �
A + C, and so A � −2. Whence

L−1
(

s + 1
s2(s − 1)

)
� −2L−1

(
1
s

)
− L−1

(
1
s2

)
+ 2L−1

(
1

s − 1
)

� −2− t + 2et.
Example 1.41. Find

L−1
(

2s2

(s2 + 1)(s − 1)2
)
.

We have

2s2

(s2 + 1)(s − 1)2 � As + B

s2 + 1 + C

s − 1 + D

(s − 1)2 ,
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or

2s2 � (As + B)(s − 1)2 + C(s2 + 1)(s − 1)+ D(s2 + 1).
Setting s � 1 gives D � 1. Also, setting s � 0 gives 0 � B−C+D, or

−1 � B − C.

Equating coefficients of s3 and s, respectively,

0 � A + C,

0 � A − 2B + C.

These last two equations imply B � 0. Then from the first equation,
C � 1; finally, the second equation shows A � −1. Therefore,

L−1
(

2s2

(s2 + 1)(s − 1)2
)

� −L−1
(

s

s2 + 1
)

+ L−1
(
1

s − 1
)

+ L−1
(

1
(s − 1)2

)

� − cos t + et + tet.

Simple Poles. Suppose that we have F(t) � L(
f (t)

)
for

F(s) � P(s)
Q (s)

� P(s)
(s − α1)(s − α2) · · · (s − αn)

, αi �� αj,

where P(s) is a polyomial of degree less than n. In the terminology of
complex variables (cf. Chapter 3), the αis are known as simple poles
of F(s). A partial fraction decomposition is

F(s) � A1

s − α1
+ A2

s − α2
+ · · · + An

s − αn
. (1.18)

Multiplying both sides of (1.18) by s − αi and letting s → αi yield

Ai � lim
s→αi
(s − αi)F(s). (1.19)

(
In Chapter 3 we will see that the Ais are the residues of F(s) at the
poles αi.

)
Therefore,

f (t) � L−1(F(s)) �
n∑
i�1

L−1
(

Ai

s − αi

)
�

n∑
i�1

Aie
αit.
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Putting in the expression (1.19) for Ai gives a quick method for
finding the inverse:

f (t) � L−1(F(s)) �
n∑
i�1
lim
s→αi
(s − αi)F(s) eαit. (1.20)

Example 1.42. Find

L−1
(

s

(s − 1)(s + 2)(s − 3)
)
.

f (t) � lim
s→1(s − 1)F(s)et + lim

s→−2(s + 2)F(s)e−2t + lim
s→3(s − 3)F(s) e3t

� −1
6
et − 2

15
e−2t + 3

10
e3t .

Exercises 1.10

1. Find L−1 of the following transforms F(s) by the partial fraction
method.

(a)
1

(s − a)(s − b)
(b)

s

2s2 + s − 1

(c)
s2 + 1

s(s − 1)3 (d)
s

(s2 + a2)(s2 + b2)
(a �� b)

(e)
s

(s2 + a2)(s2 − b2)
(f)

s + 2
s5 − 3s4 + 2s3

(g)
2s2 + 3

(s + 1)2(s2 + 1)2 (h)
s2 + s + 3

s(s3 − 6s2 + 5s + 12)

(See Example 2.42).

2. Determine

L−1
(

s2

(s2 − a2)(s2 − b2)(s2 − c2)

)
(a) by the partial fraction method
(b) by using (1.20).
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2
C H A P T E R

...........................................

Applications
and Properties

The various types of problems that can be treated with the Laplace
transform include ordinary and partial differential equations as well
as integral and integro-differential equations. In this chapter we
delineate the principles of the Laplace transform method for the
purposes of solving all but PDEs (which we discuss in Chapter 5).
In order to expand our repetoire of Laplace transforms, we

discuss the gamma function, periodic functions, infinite series, con-
volutions, as well as the Dirac delta function, which is not really a
function at all in the conventional sense. This latter is considered
in an entirely new but rigorous fashion from the standpoint of the
Riemann–Stieltjes integral.

2.1 Gamma Function

Recall from equation (1.9) that

L(tn) � n!
sn+1 , n � 1, 2, 3, . . . .

41
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In order to extend this result for non-integer values of n, consider

L(tν) �
∫ ∞

0
e−sttνdt (ν > −1).

Actually, for −1 < ν < 0, the function f (t) � tν is not piecewise
continuous on [0,∞) since it becomes infinite as t → 0+. However,
as the (improper) integral

∫ τ

0 t
νdt exists for ν > −1, and f (t) � tν is

bounded for all large values of t, the Laplace transform, L(tν), exists.
By a change of variables, x � st (s > 0),

L(tν) �
∫ ∞

0
e−x

(x
s

)ν 1
s
dx

� 1
sν+1

∫ ∞

0
xνe−x dx. (2.1)

The quantity

�(p) �
∫ ∞

0
xp−1e−xdx (p > 0)

is known as the (Euler) gamma function. Although the improper in-
tegral exists and is a continuous function of p > 0, it is not equal to
any elementary function (Figure 2.1).
Then (2.1) becomes

L(tν) � �(ν + 1)
sν+1

, ν > −1, s > 0. (2.2)

p

��p�

O �

�

���� � �

FIGURE 2.1
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Comparing (1.9) with (2.2) when v � n � 0, 1, 2, . . . yields
�(n + 1) � n!. (2.3)

Thus we see that the gamma function is a generalization of the no-
tion of factorial. In fact, it can be defined for all complex values of
ν, ν �� 0,−1,−2, · · ·, and enjoys the factorial property

�(ν + 1) � ν �(ν), ν �� 0,−1,−2, . . .
(see Exercises 2.1, Question 1).

Example 2.1. For ν � −1/2,

L(
t−

1
2
) � �

( 1
2

)
s
1
2

,

where

�
( 1
2

) �
∫ ∞

0
x− 1

2 e−x dx.

Making a change of variables, x � u2,

�
( 1
2

) � 2
∫ ∞

0
e−u2 du.

This integral is well known in the theory of probability and has the
value

√
π. (To see this, write

I2 �
(∫ ∞

0
e−x2 dx

)(∫ ∞

0
e−y2 dy

)
�

∫ ∞

0

∫ ∞

0
e−(x

2+y2)dx dy,

and evaluate the double integral by polar coordinates, to get I �√
π/2.)
Hence

L(
t−

1
2
) �

√
π

s
(s > 0) (2.4)

and

L−1(s− 1
2
) � 1√

πt
(t > 0). (2.5)

Example 2.2. Determine

L(log t) �
∫ ∞

0
e−st log t dt.


