
Implied Vol Constraints

by Peter Carr

Bloomberg

Initial version: Sept. 22, 2000

Current version: November 2, 2004

File reference: impvolconstrs3.tex

I am solely responsible for any errors.



I Introduction

This document derives a set of restrictions which implied volatility must satisfy in order to be consistent

with both no arbitrage and some mild restrictions on process dynamics. Some of these restrictions on

implied volatility were derived previously in Hardy[2] and in Gatheral et. al.[1], but there are also new

restrictions here1. Any violation of these restrictions implies either the existence of an arbitrage opportunity

or a refutation of the process restrictions (or both).

We will proceed as follows. First, for each maturity we formulate our process restrictions by specifying

the existence and nature of the risk-neutral density regarded as a function of the future stock price. We

also derive the implications of no arbitrage for this density. Then we derive implications for European

option values and for implied volatilities across strikes. Second, we derive cross maturity restrictions for

the risk-neutral density, option values, and implied volatilities.

As stated above, our starting point for the analysis is a specification of the existence and nature of

the risk-neutral density. An alternative starting point could have been a specification of the structure

of observed asset prices and trading opportunities. We felt that is it easier to impose restrictions on the

density rather than on prices, but our approach is not without its costs in terms of generality. For example,

we will show using our approach that the existence of a risk-neutral density implies that call prices decline

towards zero as the strike price increases towards infinity. However, a violation of this feature in the market

does not necessarily imply an arbitrage opportunity. The existence of an arbitrage hinges on whether or

not one can trade calls at all strikes2

The restrictions on the process dynamics which we impose are used to both simplify the analysis and



financially clear why such masses would exist at any level other than zero. We also impose limited liability

of the underlying asset for financial realism, although it is again more mathematically general to allow

negative prices. We confine ourselves to a finite time horizon domain so as to allow implied volatilty

surfaces which can only be arbitraged over an infinite time horizon3. We do not derive the combined effect

of our constraints as strikes get arbitrarily large or as strikes approach zero. For a deep exploration of

these effects, we refer the reader to Lee[3].

II Cross Strike Restrictions

II-A Risk-Neutral Density

It is well-known that the absence of arbitrage implies the existence of a probability measure Q under

which normalized prices of non-dividend paying assets are martingales. We fix a maturity T and use a

pure discount bond maturing at T to normalize asset prices4. Assuming that the measure is smooth, the

existence of the measure implies the existence of a risk-neutral density:

q0(K,T ) ≡ Q{ST ∈ [K,K + dK]}
dK

, K ≥ 0, T ∈ [0,Υ], (1)

where the nonnegativity of strikes is due to the limited liability assumed of the underlying stock, and the

upper bound Υ on maturity arises from technical concerns.

Since q0 is a probability density, it satisfies a nonnegativity condition:

q0(K,T ) ≥ 0, K ≥ 0, T ∈ [0,Υ], (2)

an integrability condition:



where S0 is the initial stock price.

The nonnegativity and integrability conditions imply the following Dirichlet upper boundary condition:

lim
K↑∞

q0(K,T ) = 0, T ∈ [0,Υ]. (5)

The requirement that the stock absorb at the origin imposes the following Dirichlet lower boundary con-

dition:

q0(0, T ) = 0, T ∈ [0,Υ]. (6)

II-B European Option Values

Let B0(T ) > 0 be the initial price of a pure discount bond paying one dollar at T ∈ [0,Υ]. At T = 0, the

bond price is its payoff:

B0(0) = 1. (7)

The ability to store money in the future implies that B′
0(T ) ≤ 0, assuming that B0 is differentiable in T .

Let F0(T ) be the forward price for delivery of one share at date T ∈ [0,Υ]. We demand that the forward

measure reprice the forward, and so:

F0(T ) ≡
∫ ∞

0
Lq0(L, T )dL, T ∈ [0,Υ]. (8)

At T = 0, (4) and (8) imply that the forward price is the initial stock price:

F0(0) = S0. (9)

Let C0(K,T ) denote the initial price of a European call struck at K ≥ 0 and maturing at T . Similarly,



We now examine the implications of these definitions for the behavior of call and put values. We focus

on call values first. Since (L − K)+ is convex in L, Jensen’s inequality and (8) imply that the call is

bounded below by its intrinsic value:

C0(K,T ) ≥ B0(T )[F0(T )− K]+, K ≥ 0, T ∈ [0,Υ]. (12)

However, at T = 0, (4), (7), (9), and (10) imply that the call’s price equals its intrinsic value:

C0(K, 0) = (S0 −K)+, K ≥ 0. (13)

Setting K = 0 in (10) and using (8) implies that zero strike calls are the product of the discount function

and forward prices:

C0(0, T ) = B0(T )F0(T ), T ∈ [0,Υ]. (14)

Setting K = ∞ in (10) implies that call values vanish asymptotically:

lim
K↑∞

C0(K,T ) = 0, T ∈ [0,Υ]. (15)

Assuming that the initial call prices are differentiable in strike, differentiating (10) w.r.t. K implies

that the call slope is proportional to the risk-neutral complementary distribution function for each fixed

maturity T :

∂

∂K
C0(K,T ) = −B0(T )

∫ ∞

K
q0(L, T )dL, K ≥ 0, T ∈ [0,Υ]. (16)

This condition, the positivity of bond prices, and the non-negativity of the risk-neutral PDF in (2) imply

that call values are decreasing in strike:

∂

∂K
C0(K,T ) ≤ 0, K ≥ 0, T ∈ [0,Υ]. (17)

Since K 0 is the lo est ossible strik (17) and (14) imply the following bound call’s alue:



Setting K = ∞ in (17) implies that the call slope vanishes asymptotically:

lim
K↑∞

∂

∂K
C0(K,T ) = 0, T ∈ [0,Υ]. (20)

Differentiating (16) w.r.t. K implies that the call’s curvature in strike is the product of the discount

function and the risk-neutral density:

∂2C0

∂K2
(K,T ) = B0(T )q0(K,T ), K ≥ 0, T ∈ [0,Υ]. (21)

This condition, the positivity of bond prices, and the non-negativity of the risk-neutral density in (2)

implies that call values are convex in strike:

∂2C0

∂K2
(K,T ) ≥ 0, K ≥ 0, T ∈ [0,Υ]. (22)

At zero strike, the absorbing boundary condition (6) implies that the curvature in strike vanishes:

∂2C0

∂K2
(0, T ) = 0, T ∈ [0,Υ]. (23)

As the strike approaches infinity, (5) and (21) imply that the curvature in strikes also vanishes:

lim
K↑∞

∂2C0

∂K2
(K,T ) = 0, T ∈ [0,Υ]. (24)

Summarizing the results thus far, we have shown that if bond prices are positive, if the forward and call

values are defined in terms of the risk-neutral density by (8) and (10) respectively, and if (2) to (6) hold

for this density, then one obtains the following necessary conditions on call prices (assuming the requisite

smoothness):

C0(K, 0) = (S0 −K)+, K ≥ 0. (25)



Conversely, if bond prices are positive, if q0(K,T ) is defined from (21) by:

q0(K,T ) ≡
∂2C0

∂K2 (K,T )

B0(T )
, K ≥ 0, T ∈ [0,Υ], (29)

and if (25) to (28) hold, then it is straightforward to verify that (2) to (6) hold.

We now examine the implications of the definition (11) for the behavior of put values. Since (K −L)+

is convex in L, Jensen’s inequality and (8) imply that the put is bounded below by its intrinsic value:

P0(K,T ) ≥ B0(T )[K − F0(T )]+, K ≥ 0, T ∈ [0,Υ]. (30)

However, at T = 0, (4), (7), (9), and (11) imply that the put’s price equals its intrinsic value:

P0(K, 0) = (K − S0)
+, K ≥ 0. (31)

Since zero is the lowest possible stock price, (11) implies the following upper bound on a put’s value:

P0(K,T ) ≤ B0(T )K, K ≥ 0, T ∈ [0,Υ]. (32)

Setting K = 0 in (11) and using (8) implies that zero strike puts are worthless:

P0(0, T ) = 0, T ∈ [0,Υ]. (33)

Setting K = ∞ in (11) implies that put values increase without limit:

lim
K↑∞

P0(K,T ) = ∞, T ∈ [0,Υ]. (34)

Assuming that the initial put prices are differentiable in strike, differentiating (11) w.r.t. K implies

that the put slope is proportional to the risk-neutral distribution function for each fixed maturity T :

∂ K



Setting K = 0 in (35) implies that the put slope vanishes at zero :

∂

∂K
P0(0, T ) = 0, T ∈ [0,Υ]. (37)

Setting K = ∞ in (35) and using (3) implies that the put slope is the bond price asymptotically:

lim
K↑∞

∂

∂K
P0(K,T ) = B0(T ), T ∈ [0,Υ]. (38)

Differentiating (35) w.r.t. K implies that the put’s curvature in strike is the product of the discount

function and the risk-neutral density:

∂2P0

∂K2
(K,T ) = B0(T )q0(K,T ), K ≥ 0, T ∈ [0,Υ]. (39)

This condition, the positivity of bond prices, and the non-negativity of the risk-neutral density in (2)

implies that put values are convex in strike:

∂2P0

∂K2
(K,T ) ≥ 0, K ≥ 0, T ∈ [0,Υ]. (40)

At zero strike, the absorbing boundary condition (6) implies that the curvature in strike vanishes:

∂2P0

∂K2
(0, T ) = 0, T ∈ [0,Υ]. (41)

As the strike approaches infinity, (5) and (39) imply that the curvature in strikes also vanishes:

lim
K↑∞

∂2P0

∂K2
(K,T ) = 0, T ∈ [0,Υ]. (42)

Summarizing the results on put prices, we have shown that if bond prices are positive, if the forward

and put values are defined in terms of the risk-neutral density by (8) and (11) respectively, and if (2) to



∂

∂K
P0(0, T ) = 0,

∂

∂K
P0(K,T ) ≥ 0,K > 0, lim

K↑∞

∂

∂K
P0(K,T ) = B0(T ), T ∈ [0,Υ]. (45)

∂2

∂K2
P0(0, T ) = 0,

∂2

∂K2
P0(K,T ) ≥ 0,K > 0, lim

K↑∞

∂2

∂K2
P0(K,T ) = 0, T ∈ [0,Υ]. (46)

Conversely, if bond prices are positive, if q0(K,T ) is defined from (39) by:

q0(K,T ) ≡
∂2P0

∂K2 (K,T )

B0(T )
, K ≥ 0, T ∈ [0,Υ], (47)

and if (43) to (46) hold, then it is straightforward to verify that (2) to (6) hold.

II-C Implied Volatility Surface

Since some of the restrictions to follow will involve derivatives w.r.t. maturity, it will be easier to work

with spot prices rather than forward prices. Thus, assuming that bond, stock, and option prices are

arbitrage-free, the initial implied volatility surface is defined by:

σi0(K,T ) ≡ BSC−1(S0, t0;K,T ; r0T , q0T , C0(K,T )), K > 0, T ∈ (0,Υ]. (48)

where BSC−1 is the inverse of the Black Scholes call formula in volatility, and r0T and q0T are the contin-

uously compounded bond yield and dividend yield over [0, T ]. Note that we require positive strikes and

maturities since implied volatility is not well defined otherwise. Also note that we used the call formula

and call prices for definiteness, but under no arbitrage the use of puts must yield the same answer. From

(48):

C0(K,T ) ≡ BSC(S0, t0;K,T ; r0T , q0T , σi0(K,T )), K > 0, T ∈ (0,Υ]. (49)

From put call parity, we also have:

P (K T ) ≡ BSP (S t ;K T ; r q σ (K T )) K > 0 T ∈ (0 Υ] (50)



and the convexity condition:

∂2

∂K2
C0(K,T ) ≥ 0, K > 0, T ∈ (0,Υ]. (52)

Similarly, the only conditions on the put price behavior in (43) to (46) which do not necessarily hold for

any real and positive implied volatility σi0(K,T ) are the slope condition:

∂

∂K
P0(K,T ) ≥ 0, K > 0, T ∈ (0,Υ], (53)

and the convexity condition:

∂2

∂K2
P0(K,T ) ≥ 0, K > 0, T ∈ (0,Υ]. (54)

Assuming that the market put prices are differentiable in K, differentiating (50) w.r.t. K implies:

∂

∂K
P0(K,T ) =

∂BSP

∂K
+

∂BSP

∂σ

∂σi0

∂K
(K,T ), K > 0, T ∈ (0,Υ]. (55)

Thus, the nonnegativity of a vertical spread in (53) places a lower bound on the slope in strike of implied:

∂σt

∂K
(T,K) ≥ −

∂BSP
∂K

∂BSP
∂σ

, K > 0, T ∈ (0,Υ].

Now, by the properties of the Black Scholes formula:

∂BSP

∂K
= e−r̄0T T N(−d2), K > 0, T ∈ [0,Υ]. (56)

∂BSP

∂σ
= Ke−r̄0T T

√
TN ′(d2), K > 0, T ∈ [0,Υ]. (57)

Substituting these results in (55) implies that the lower bound on the strike slope simplifies to:

∂σi0

∂K
(T,K) ≥ − N(−d2)

K
√

TN ′(d2)
K > 0, T ∈ (0,Υ].

Dividing by K implies:



Assuming that the market call prices are twice differentiable in K, differentiating (49) w.r.t. K once

implies:

∂

∂K
C0(K,T ) =

∂BSC

∂K
+

∂BSC

∂σ

∂σi0

∂K
(K,T ), K > 0, T ∈ (0,Υ]. (59)

Thus, the nonpositivity of a vertical spread in (51) places an upper bound on the slope in strike of implied:

∂σt

∂K
(T,K) ≤ −

∂BSC
∂K

∂BSC
∂σ

, K > 0, T ∈ (0,Υ].

Now, by the properties of the Black Scholes formula:

∂BSC

∂K
= −e−r̄0T TN(d2), K > 0, T ∈ [0,Υ]. (60)

∂BSC

∂σ
= Ke−r̄0T T

√
TN ′(d2), K > 0, T ∈ [0,Υ]. (61)

Substituting these results in (59) implies that the upper bound on the strike slope simplifies to:

∂σi0

∂K
(T,K) ≤ N(d2)

K
√

TN ′(d2)
K > 0, T ∈ (0,Υ].

Dividing by K implies:

∂σi0

∂ lnK
(T,K) ≤ 1 − N(−d2)√

TN ′(−d2)
=

R(−d2)√
T

, K > 0, T ∈ [0,Υ], (62)

where recall R(d) ≡ 1−N(d)
N ′(d)

is Mill’s Ratio. Loosely speaking, (62) says that if the strike is increased by

one percent, then implied vol cannot increase by more than Mill’s ratio divided by the square root of the

time to maturity.

Thus, we have negative lower bounds and positive upper bounds on the slope in strike of implied

volatility:

−R(d2)√
T

≤ ∂σi0

∂ lnK
(T,K) ≤ R(−d2)√

T
, K > 0, T ∈ [0,Υ], (63)



Since d2 = ln(F/K)

σi0(K,T )
√

T
− σi0(K,T )

√
T

2
,

lim
T↑∞

d2 = −∞

lim
T↑∞

−d2 = ∞.

Thus, we have:

lim
T↑∞

−R(−∞)√
T

≤ lim
T↑∞

∂σi0

∂ lnK
(T,K) ≤ lim

T↑∞

R(∞)√
T

, K > 0, T ∈ [0,Υ]. (64)

To determine R(−∞) and R(∞), recall the definition of Mill’s ratio:

R(d) ≡ 1 − N(d)

N ′(d)
. (65)

Using L’Hopital’s rule:

lim
d↑∞

R(d) = lim
d↑∞

1

d
= 0

lim
−d↓∞

R(d) = lim
−d↓∞

1

d
= 0.

Substituting this result in (64) implies that the slope in strike of the implied vanishes asymptotically:

lim
T↑∞

∂σi0

∂ lnK
(T,K) = 0.

Furthermore, the leading order in the rate of decline is O
(

1
T

)
. If implieds are graphed against d ≡ ln(K/F )√

T
,

then the leading order in the rate of decline is O
(

1√
T

)
. Given this behavior, it is interesting to note that

the empirical consistency of the implied slope in the variable d which is observed for the first few years

in the S&P market, cannot persist at indefinitely long maturities. The volatility smile must flatten out

asymptotically.



Thus, the non-negativity of a butterfly spread in (52) places a bound on the curvature in strike of the

initial implied volatility surface:

∂2σ0

∂K2
(K,T ) ≥ −

∂2BSC
∂K2

∂BSC
∂σ

− 2
∂2BSC
∂σ∂K
∂BSC

∂σ

∂σi0

∂K
(K,T ) −

∂2BSC
∂σ2

∂BSC
∂σ

(
∂σi0

∂K
(K,T )

)2

, K > 0, T ∈ (0,Υ].

Now, by the properties of the Black Scholes call formula:

∂2BSC

∂K2
=

e−r̄0T TN ′(d2)

Kσ
√

T
, K > 0, T ∈ (0,Υ]. (67)

∂2BSC

∂σ∂K
= e−r̄0T T N ′(d2)

d1

σ
, K > 0, T ∈ (0,Υ]. (68)

∂2BSC

∂σ2
= N ′(d2)

Ke−r̄0T T
√

Td1d2

σ
, K > 0, T ∈ (0,Υ]. (69)

Substituting these results in (66) implies that the lower bound on curvature simplifies to:

∂2σi0

∂K2
(K,T ) ≥ − 1

K2σi0(K,T )
− 2d1

σi0(T,K)K
√

T

∂σi0

∂K
(K,T )− d1d2

σi0(T,K)

(
∂σi0

∂K
(K,T )

)2

, K > 0, T ∈ (0,Υ].

(70)

Loosely speaking, if the strike is increased by $1, the change in the strike slope of the implied volatility is

bounded below. Since puts and calls have the same second strike derivative, the imposition of (54) does

not produce any more constraints on the behavior of the implied volatility.

Conversely, if the three cross-strike arbitrage restrictions (58),(62), and (70) hold for the implied volatil-

ity, then the corresponding cross-strike conditions (25) to (28) hold for call values and the cross-strike

conditions (43) to (46) hold for put values.

III Cross Maturity Restrictions

III-A Risk-neutral Density



denote the density governing the risk-neutral probability that the stock price at T ′ is near K, conditional

on the information set FT at the future time T . This information set includes at least bond, stock, and

call prices at time T . Since qT (K,T ′) is a probability density, it is non-negative:

qT (K,T ′) ≥ 0, K ≥ 0, T ∈ [0,Υ], T ′ ∈ [T,Υ], (72)

integrates to one:
∫ ∞

0
qT (L, T ′)dL = 1, K ≥ 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (73)

and satisfies the initial condition:

qT (K,T ) = δ(K − ST ), (74)

where ST is the stock price at T . The nonnegativity and integrability conditions imply the following

Dirichlet upper boundary condition:

lim
K↑∞

qT (K,T ′) = 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (75)

The requirement that the stock absorb at the origin imposes the following Dirichlet lower boundary con-

dition:

qT (0, T ′) = 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (76)

III-B Call Prices

The ability to trade in the stock between T and T ′ implies that under the forward measure, the forward

price of maturity T ′ has zero expected change over [T, T ′], or equivalently, qT (L, T ′) obeys the following

“forward repricing condition”:

∫ ∞



Repeating the unconditional analysis of the last section implies that:

CT (K,T ) = (ST − K)+, K ≥ 0, T ∈ [0,Υ]. (79)

CT (0, T ′) = BT (T ′)FT (T ′), lim
K↑∞

CT (K,T ′) = 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (80)

CT (K,T ′) ∈ [BT (T ′)(FT (T ′) − K)+, BT (T ′)FT (T ′)], K > 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (81)

∂

∂K
CT (0, T ′) = BT (T ′),

∂

∂K
CT (K,T ′) ≤ 0,K > 0, lim

K↑∞

∂

∂K
CT (K,T ′) = 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (82)

∂2

∂K2
CT (0, T ′) = 0,

∂2

∂K2
CT (K,T ′) ≥ 0,K > 0, lim

K↑∞

∂2

∂K2
CT (K,T ′) = 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (83)

Conversely, if qT (K,T ′) is defined by:

qT (K,T ′) ≡
∂2CT

∂K2 (K,T ′)

BT (T ′)
, K ≥ 0, T ∈ [0,Υ], T ′ ∈ [T,Υ] (84)

and if (79) to (83) hold, then it is straightforward to verify that (72) to (76) hold.

Under deterministic interest rates and dividends, the lower bound in (81) implies that the conditional

call value has non-negative time value:

CT (K,T ′) ≥ [STe−q̄T,T ′ τ − Ke−r̄T,T ′ τ ]+ = e−q̄T,T ′ τ [ST − Ke−(r̄T,T ′−q̄T,T ′ )τ ]+, K > 0, T ∈ [0,Υ], T ′ ∈ [T,Υ].

(85)

Taking unconditional risk-neutral expectations implies that a modified calendar spread has non-negative

value:

C0(K,T ′) − e−q̄T,T ′ τC0(Ke−(r̄T,T ′−q̄T,T ′ )τ , T ) ≥ 0, K ≥ 0, T ∈ [0,Υ], T ′ ∈ [T,Υ]. (86)

Dividing by T ′ − T > 0, the LHS can be rewritten as:

C0(K,T ′) − C0(K,T )

T T
+ [r(T )− q(T )]K

C0(K,T )− C0(Ke−(r̄T,T ′−q̄T,T ′ )τ , T )

[ (T ) (T )]K(T T )



Substituting (29) in (88) and simplifying yields the following constraint on the initial risk-neutral density:

∫ ∞

K
(L − K)

∂

∂T
q0(L, T )dL + [q(T )− r(T )]

∫ ∞

K
Lq0(L, T )dL ≥ 0, K ≥ 0, T ∈ [0,Υ]. (89)

A corresponding analysis for puts would imply:

∂

∂T
P0(K,T ) + [r(T )− q(T )]K

∂

∂K
P0(K,T ) + q(T )P0(K,T ) ≥ 0, K ≥ 0, T ∈ [0,Υ]. (90)

Substituting (47) in (90) and simplifying yields the following constraint on the initial risk-neutral density:

∫ K

0
(K − L)

∂

∂T
q0(L, T )dL + [q(T )− r(T )]

∫ K

0
Lq0(L, T )dL ≥ 0, K ≥ 0, T ∈ [0,Υ]. (91)

Since (90) can be derived from (88) and put call parity, any risk-neutral density satisfying (88) and put

call parity will also satisfy (91).

III-C Implied Volatility

Assuming that the market price of a call is always differentiable in T , differentiating (49) w.r.t. T implies:

∂

∂T
C0(K,T ) =

∂BSC

∂T
+

∂BSC

∂σ

∂σi0

∂T
(K,T ), K > 0, T ∈ (0,Υ]. (92)

Thus, the non-negativity of the modified calendar spread value in (88) translates into the following restric-

tion on the initial implied:

∂BSC

∂T
+

∂BSC

∂σ

∂σi0

∂T
(K,T )+[r(T )−q(T )]

[
∂BSC

∂K
+

∂BSC

∂σ

∂σi0

∂K
(K,T )

]
+q(T )BSC ≥ 0, K > 0, T ∈ (0,Υ],

or equivalently:

σ2
i0(K,T )K2 ∂2BSC

+
∂BSC ∂σi0

(K T ) + [r(T ) q(T )]
∂BSC ∂σi0

(K T ) ≥ 0 K > 0 T ∈ (0 Υ]



by the properties (61) and (67) of the Black Scholes formula. Dividing both sides by σi0(K,T ) implies:

∂ lnσi0

∂T
(K,T ) ≥ −1

2
− [r(T )− q(T )]

∂ lnσi0

∂K
(K,T ), K > 0, T ∈ (0,Υ]. (93)

Loosely speaking, if r(T ) = q(T ) and the maturity is increased slightly, then implied volatility cannot fall

by more than half a percent of its former value.

Conversely, if the cross-maturity arbitrage restriction (93) holds for the initial implied volatility surface,

then the corresponding cross-maturity condition (88) holds for the initial call values.

Recall the arbitrage restrictions across strike on implied volatility:

R(d2)√
T

≤ ∂σi0

∂ lnK
(T,K) ≤ R(−d2)√

T
, K > 0, T ∈ [0,Υ], (94)

where R(d) ≡ 1−N(d)
N ′(d)

is Mill’s Ratio, and:

∂2σi0

∂K2
(K,T ) ≥ − 1

K2σi0(K,T )
− 2d1

σi0(T,K)K
√

T

∂σi0

∂K
(K,T )

d1d2

σi0(T,K)

(
∂σi0

∂K
(K,T )

)2

, K > 0, T ∈ (0,Υ].

(95)

Taken together, the three restrictions (93),(94), and (95) imply that when implied volatility is plotted

against strike and maturity, no arbitrage requires that it cannot fall too fast with maturity nor change

too much with strike. Furthermore, while the implied volatility can be concave in strike, it cannot be too

concave.

Conversely, if the three restrictions on the implied volatility surface hold, then if the call and put

prices at strike K and maturity T are quoted by using the appropriate Black Scholes formula with the

corresponding implied vol as in (49), then these quotes are arbitrage-free.
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